4.5 Article

Double-Gate Vectorial Frequency Control in Piezoresistive Nanowire Electromechanical Devices

期刊

PHYSICAL REVIEW APPLIED
卷 17, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.17.044042

关键词

-

资金

  1. JSPS KAKENHI [JP21H01023]

向作者/读者索取更多资源

In this study, a nanowire-based electromechanical resonator device with vacuum-gap and orthogonally aligned double-gate geometry is used to independently control two nearly degenerate orthogonal vibration modes. The piezoresistance mechanism dominates the motion-induced conductance variation in the device, providing an efficient method for converting vibrational motion into an electric signal. By applying two gate voltages simultaneously, an opposite combined effect on the frequency shift between the two vibration modes is achieved, which is well explained by model calculations. This study demonstrates the vectorial control of two mode frequencies using the opposite double-gate effect, which is not possible with single-gate geometry.
Vacuum-gap and orthogonally aligned double-gate geometry is employed in a nanowire-based electromechanical resonator device to independently control two nearly degenerate orthogonal vibration modes. In the device, piezoresistance is the dominant mechanism of motion-induced conductance variation, which provides an efficient scheme for the self-transduction of vibrational motion into an electric signal. Two simultaneously applied gate voltages induce an opposite combined effect on the frequency shift between two vibration modes, which is well explained by model calculations. Using the opposite double-gate effect, we demonstrate vectorial control of two mode frequencies, which is not possible with single-gate geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据