4.7 Article

Phase Transitions of Cu and Fe at Multiscales in an Additively Manufactured Cu-Fe Alloy under High-Pressure

期刊

NANOMATERIALS
卷 12, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/nano12091514

关键词

Cu-Fe alloys; additive manufacturing; hierarchical microstructure; phase transformation; Cu and Fe precipitates

资金

  1. Department of Energy-National Nuclear Security Administration (DOE-NNSA), Stewardship Science Academic Program [DE-NA0003857]

向作者/读者索取更多资源

In this study, a state-of-the-art additive manufacturing system was used to produce a custom-built 50Cu-50Fe alloy. High-pressure compression experiments were conducted to investigate the structural stability and deformation of the material. The results showed that the Fe phase remained stable up to a certain pressure, while Cu undergoes a structural transition. This work highlights the potential of additive manufacturing for tailored functional materials and extreme stress/deformation applications.
A state of the art, custom-built direct-metal deposition (DMD)-based additive manufacturing (AM) system at the University of Michigan was used to manufacture 50Cu-50Fe alloy with tailored properties for use in high strain/deformation environments. Subsequently, we performed preliminary high-pressure compression experiments to investigate the structural stability and deformation of this material. Our work shows that the alpha (BCC) phase of Fe is stable up to similar to 16 GPa before reversibly transforming to HCP, which is at least a few GPa higher than pure bulk Fe material. Furthermore, we observed evidence of a transition of Cu nano-precipitates in Fe from the well-known FCC structure to a metastable BCC phase, which has only been predicted via density functional calculations. Finally, the metastable FCC Fe nano-precipitates within the Cu grains show a modulated nano-twinned structure induced by high-pressure deformation. The results from this work demonstrate the opportunity in AM application for tailored functional materials and extreme stress/deformation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据