4.7 Article

Nanoparticles to Enhance Melting Performance of Phase Change Materials for Thermal Energy Storage

期刊

NANOMATERIALS
卷 12, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/nano12111864

关键词

phase change material; energy storage; nanoparticles; nanofluid; melting process; PCM; heat transfer; natural convection; liquid-solid interface

资金

  1. Suqian SciTech Program [K202131]

向作者/读者索取更多资源

This study proposes the use of phase change materials (PCM) as thermal energy storage units to enhance the stability and flexibility of solar-energy-based heating and cooling systems. A mathematical model is developed to evaluate the melting process of PCM, taking into consideration the effect of nanoparticles on heat transfer. The results show that natural convection plays a dominant role in the flow behavior of PCM melting, and the addition of Al2O3 nanoparticles improves PCM melting performance but higher thermal conductivity does not contribute significantly to the melting performance of PCMs.
The present study proposes the phase change material (PCM) as a thermal energy storage unit to ensure the stability and flexibility of solar-energy-based heating and cooling systems. A mathematical model is developed to evaluate the PCM melting process, considering the effect of nanoparticles on heat transfer. We evaluate the role of nanoparticles (Al2O3-, copper- and graphene-based nanofluids) in enhancing the performance of the melting process of phase change materials. The results show that natural convection due to the buoyancy effect dominates the flow behaviour even in the initial stage of the PCM melting process. High natural convection at the bottom of the annular tube moves the melted PCM upward from the lateral, which pushes the liquid-solid interface downward. The addition of 3% vol Al2O3 nanoparticles boosts PCM melting performance by decreasing the melting time of PCM by approximately 15%. The comparison of Al2O3, copper and graphene nanoparticles demonstrates that higher thermal conductivity, ranging from 36 to 5000 W m(-1) K-1, does not contribute to a significant improvement in the melting performance of PCMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据