4.5 Article

Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve

期刊

JOURNAL OF BIOMECHANICS
卷 49, 期 12, 页码 2502-2512

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2016.02.041

关键词

Aortic valve; Fluid structure interaction; Arbitrary Lagrangian Eulerian; Anisotropic material model

资金

  1. Marie Curie EST Fellowship [MEST/CT/2005/020327]
  2. Leeds Center of Excellence in Medical Engineering - Wellcome Trust
  3. Engineering and Physical Sciences Research Council [WT088908/z/09/z]
  4. Engineering and Physical Sciences Research Council Advanced Research Fellowship [EP/D073618/1]
  5. Engineering and Physical Sciences Research Council [EP/D073618/1] Funding Source: researchfish
  6. EPSRC [EP/D073618/1] Funding Source: UKRI

向作者/读者索取更多资源

This study developed a realistic 3D FSI computational model of the aortic valve using the fixed-grid method, which was eventually employed to investigate the effect of the leaflet thickness inhomogeneity and leaflet mechanical nonlinearity and anisotropy on the simulation results. The leaflet anisotropy and thickness inhomogeneity were found to significantly affect the valve stress-strain distribution. However, their effect on valve dynamics and fluid flow through the valve were minor. Comparison of the simulation results against in-vivo and in-vitro data indicated good agreement between the computational models and experimental data. The study highlighted the importance of simulating multi-physics phenomena (such as fluid flow and structural deformation), regional leaflet thickness inhomogeneity and anisotropic nonlinear mechanical properties, to accurately predict the stress-strain distribution on the natural aortic valve. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据