4.6 Article

Dietary Administration of L-Carnitine During the Fattening Period of Early Feed Restricted Lambs Modifies Ruminal Fermentation but Does Not Improve Feed Efficiency

期刊

FRONTIERS IN PHYSIOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2022.840065

关键词

feed efficiency; lamb; residual feed intake; L-Carnitine; ruminal fermentation; microbiota; feed restriction; nutritional programming

资金

  1. Ministerio de Ciencia e Innovacion (MCIN/AEI, FEDER, Una manera de hacer Europa) [RTI2018-099329-B-I00]

向作者/读者索取更多资源

This study found that adding L-Carnitine to the diet during the fattening period of lambs fed with restricted feed can improve ruminal fermentation parameters, modulate gut microbiota, and enhance the health of the animals. However, the effects of L-Carnitine on feed efficiency were not significant, possibly due to the improved ruminal fermentation and increased intramuscular fat accumulation caused by L-Carnitine supplementation.
Early feed restriction of lambs may program animals to achieve reduced feed efficiency traits as a consequence of permanent mitochondrial dysfunction. The hypothesis at the background of the present study is that dietary administration of L-Carnitine (a compound that promotes the activation and transportation of fatty acids into the mitochondria) during the fattening period of early feed restricted lambs can: (a) improve the biochemical profile of early feed restricted lambs, (b) improve feed efficiency, (c) modulate the ruminal and intestinal microbiota, and (d) induce changes in the gastrointestinal mucosa, including the immune status. Twenty-two newborn male Merino lambs were raised under natural conditions but separated from the dams for 9 h daily to allow feed restriction during the suckling period. At weaning, lambs were assigned to a control group being fed ad libitum a complete pelleted diet during the fattening phase (CTRL, n = 11), whereas the second group (CARN, n = 11) received the same diet supplemented with 3 g of L-Carnitine/kg diet. The results revealed that even though L-Carnitine was absorbed, feed efficiency was not modified by dietary L-Carnitine during the fattening period (residual feed intake, p > 0.05), whereas ruminal fermentation was improved [total short-chain fatty acids (SCFAs), 113 vs. 154 mmol/l; p = 0.036]. Moreover, a trend toward increased concentration of butyrate in the ileal content (0.568 vs. 1.194 mmol/100 ml SCFA; p = 0.074) was observed. Other effects, such as reduced heart weight, lower levels of markers related to muscle metabolism or damage, improved renal function, and increased ureagenesis, were detected in the CARN group. Limited changes in the microbiota were also detected. These findings suggest that L-Carnitine may improve ruminal fermentation parameters and maintain both the balance of gut microbiota and the health of the animals. However, the improved ruminal fermentation and the consequent greater accumulation of intramuscular fat might have hidden the effects caused by the ability of dietary L-Carnitine to increase fatty acid oxidation at the mitochondrial level. This would explain the lack of effects of L-Carnitine supplementation on feed efficiency and points toward the need of testing lower doses, probably in the context of animals being fed in excess non-protein nitrogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据