4.7 Article

Safety Assessment of Ultrasound-Assisted Intravesical Chemotherapy in Normal Dogs: A Pilot Study

期刊

FRONTIERS IN PHARMACOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphar.2022.837754

关键词

drug delivery; intravesical chemotherapy; microbubble; non-muscle invasive bladder cancer; pirarubicin; ultrasound

资金

  1. JSPS KAKENHI [JP19K15971, JP18H04132]
  2. MEXT Project for promoting public utilization of advanced research infrastructure [JPMXS0420100619]

向作者/读者索取更多资源

Intravesical chemotherapy is a treatment option for non-muscle invasive bladder cancer, and drug delivery technologies can enhance its efficacy. Ultrasound-triggered microbubble cavitation may be an effective drug delivery technology in the urinary bladder. The combination of ultrasound and microbubbles does not increase drug concentration in the plasma and does not cause damage to the urothelium.
Intravesical chemotherapy after transurethral resection is a treatment option in patients with non-muscle invasive bladder cancer. The efficacy of intravesical chemotherapy is determined by the cellular uptake of intravesical drugs. Therefore, drug delivery technologies in the urinary bladder are promising tools for enhancing the efficacy of intravesical chemotherapy. Ultrasound-triggered microbubble cavitation may enhance the permeability of the urothelium, and thus may have potential as a drug delivery technology in the urinary bladder. Meanwhile, the enhanced permeability may increase systemic absorption of intravesical drugs, which may increase the adverse effects of the drug. The aim of this preliminary safety study was to assess the systemic absorption of an intravesical drug that was delivered by ultrasound-triggered microbubble cavitation in the urinary bladder of normal dogs. Pirarubicin, a derivative of doxorubicin, and an ultrasound contrast agent (Sonazoid) microbubbles were administered in the urinary bladder. Ultrasound (transmitting frequency 5 MHz; pulse duration 0.44 mu sec; pulse repetition frequency 7.7 kHz; peak negative pressure -1.2 MPa) was exposed to the bladder using a diagnostic ultrasound probe (PLT-704SBT). The combination of ultrasound and microbubbles did not increase the plasma concentration of intravesical pirarubicin. In addition, hematoxylin and eosin staining showed that the combination of ultrasound and microbubble did not cause observable damages to the urothelium. Tissue pirarubicin concentration in the sonicated region was higher than that of the non-sonicated region in two of three dogs. The results of this pilot study demonstrate the safety of the combination of intravesical pirarubicin and ultrasound-triggered microbubble cavitation, that is, ultrasound-assisted intravesical chemotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据