4.4 Article

Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells

期刊

JOURNAL OF BIOMATERIALS APPLICATIONS
卷 31, 期 1, 页码 132-139

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0885328216638636

关键词

Tissue engineering; stem cells; selective laser sintering; bone regeneration; PEEK; craniofacial reconstruction

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [47742]
  2. McGill University Department of Otolaryngology - Head Neck Surgery

向作者/读者索取更多资源

Objective Polyetheretherketone (PEEK) is a bioinert thermoplastic that has been investigated for its potential use in craniofacial reconstruction; however, its use in clinical practice is limited by a poor integration with adjacent bone upon implantation. To improve the bone-implant interface, two strategies have been employed: to modify its surface or to impregnate PEEK with bioactive materials. This study attempts to combine and improve upon the two approaches by modifying the internal structure into a trabecular network and to impregnate PEEK with mesenchymal stem cells. Furthermore, we compare the newly designed PEEK scaffolds' interactions with both bone-derived (BMSC) and adipose (ADSC) stem cells. Design Customized PEEK scaffolds were designed to incorporate a trabecular microstructure using a computer-aided design program and then printed via selective laser sintering (SLS), a 3D-printing process with exceptional accuracy. The scaffold structure was evaluated using microCT. Scanning electron microscopy (SEM) was used to evaluate scaffold morphology with and without mesenchymal stem cells (MSCs). Adipose and bone marrow mesenchymal cells were isolated from rats and cultured on scaffolds. Cell proliferation and differentiation were assessed using alamarBlue and alkaline phosphatase assays, respectively. Cell morphology after one week of co-culturing cells with PEEK scaffolds was evaluated using SEM. Results SLS 3D printing fabricated scaffolds with a porosity of 36.38%6.66 and density of 1.309g/cm(2). Cell morphology resembled viable fibroblasts attaching to the surface and micropores of the scaffold. PEEK scaffolds maintained the viability of both ADSCs and BMSCs; however, ADSCs demonstrated higher osteodifferentiation than BMSCs (p<0.05). Conclusions This study demonstrates for the first time that SLS 3D printing can be used to fabricate customized porous PEEK scaffolds that maintain the viability of adipose and bone marrow-derived MSCs and induce the osteodifferentiation of the adipose-derived MSCs. The combination of 3D printed PEEK scaffolds with MSCs could overcome some of the limitations using PEEK biopolymers for load-bearing bone regeneration in craniofacial reconstruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据