4.4 Article

Nrf2-Dependent Suppression of Azoxymethane/Dextran Sulfate Sodium-Induced Colon Carcinogenesis by the Cinnamon-Derived Dietary Factor Cinnamaldehyde

期刊

CANCER PREVENTION RESEARCH
卷 8, 期 5, 页码 444-454

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1940-6207.CAPR-14-0359

关键词

-

类别

资金

  1. NIH [2R01ES015010, R01CA154377]
  2. NIH (Arizona Cancer Center) [CA023074, ES007091, ES06694, R21CA166926]
  3. State Scholarship Fund of China [201207610022]
  4. National Natural Science Foundation of China [81228023]
  5. Chongqing Science Foundation [cstc2013jcsfC10001-5]

向作者/读者索取更多资源

The progressive nature of colorectal cancer and poor prognosis associated with the metastatic phase of the disease create an urgent need for the development of more efficacious strategies targeting colorectal carcinogenesis. Cumulative evidence suggests that the redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defence, represents a promising molecular target for colorectal cancer chemoprevention. Recently, we have identified cinnamon, the ground bark of Cinnamomum aromaticum (cassia cinnamon) and Cinnamomum verum (Ceylon cinnamon), as a rich dietary source of the Nrf2 inducer cinnamaldehyde (CA) eliciting the Nrf2-regulated antioxidant response in human epithelial colon cells, conferring cytoprotection against electrophilic and genotoxic insult. Here, we have explored the molecular mechanism underlying CA-induced Nrf2 activation in colorectal epithelial cells and have examined the chemopreventive potential of CA in a murine colorectal cancer model comparing Nrf2(+/-) with Nrf2(+/-) mice. In HCT116 cells, CA caused a Keap1-C151-dependent increase in Nrf2 protein half-life via blockage of ubiquitination with upregulation of cytoprotective Nrf2 target genes and elevation of cellular glutathione. After optimizing colorectal Nrf2 activation and target gene expression by dietary CA-supplementation regimens, we demonstrated that CA suppresses AOM/DSS-induced inflammatory colon carcinogenesis with modulation of molecular markers of colorectal carcinogenesis. Dietary suppression of colorectal cancer using CA supplementation was achieved in Nrf2(+/-) but not in Nrf2(+/-) mice confirming the Nrf2 dependence of CA-induced chemopreventive effects. Taken together, our data suggest feasibility of colorectal cancer suppression by dietary CA, an FDA-approved food additive derived from the third most consumed spice in the world.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据