4.8 Article

Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid

期刊

NANO ENERGY
卷 97, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2022.107191

关键词

CO 2 reduction reaction; Noble carbon; Ni-O4 electrocatalysts; Formic acid

资金

  1. Max Planck Society

向作者/读者索取更多资源

Electrochemical reduction of CO2 is an important utilization method, and the loading of nickel single atoms on carbon supports offers a promising catalytic solution. The use of carbonaceous supports with high heteroatom content allows for efficient and stable reduction reactions, producing products with high selectivity.
Electrochemical reduction stands as an alternative to revalorize CO2. Among the different alternatives, Ni single atoms supported on carbonaceous materials are an appealing catalytic solution due to the low cost and versatility of the support and the optimal usage of Ni and its predicted selectivity and efficiency (ca. 100% towards CO). Herein, we have used noble carbonaceous support derived from cytosine to load Ni subnanometric sites. The large heteroatom content of the support allows the stabilization of up to 11 wt% of Ni without the formation of nanoparticles through a simple impregnation plus calcination approach, where nickel promotes the stabilization of C3NOx frameworks and the oxidative support promotes a high oxidation state of nickel. EXAFS analysis points at nickel single atoms or subnanometric clusters coordinated by oxygen in the material surface. Unlike the wellknown N-coordinated Ni single sites selectivity towards CO2 reduction, O-coordinated-Ni single sites (ca. 7 wt% of Ni) reduced CO2 to CO, but subnanometric clusters (11 wt% of Ni) foster the unprecedented formation of HCOOH with 27% Faradaic efficiency at - 1.4 V. Larger Ni amounts ended up on the formation of NiO nanoparticles and almost 100% selectivity towards hydrogen evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据