4.8 Article

Adaptive 3D descattering with a dynamic synthesis network

期刊

LIGHT-SCIENCE & APPLICATIONS
卷 11, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41377-022-00730-x

关键词

-

类别

资金

  1. National Science Foundation [1813848, 1846784]
  2. Directorate For Engineering
  3. Div Of Electrical, Commun & Cyber Sys [1846784] Funding Source: National Science Foundation
  4. Division of Computing and Communication Foundations
  5. Direct For Computer & Info Scie & Enginr [1813848] Funding Source: National Science Foundation

向作者/读者索取更多资源

The researchers propose an adaptive learning framework called dynamic synthesis network (DSN) to adapt to different scattering conditions by blending multiple experts using a gating network. They demonstrate the DSN in holographic 3D particle imaging for a variety of scattering conditions and show its robust performance in simulation and experiments.
Deep learning has been broadly applied to imaging in scattering applications. A common framework is to train a descattering network for image recovery by removing scattering artifacts. To achieve the best results on a broad spectrum of scattering conditions, individual expert networks need to be trained for each condition. However, the expert's performance sharply degrades when the testing condition differs from the training. An alternative brute-force approach is to train a generalist network using data from diverse scattering conditions. It generally requires a larger network to encapsulate the diversity in the data and a sufficiently large training set to avoid overfitting. Here, we propose an adaptive learning framework, termed dynamic synthesis network (DSN), which dynamically adjusts the model weights and adapts to different scattering conditions. The adaptability is achieved by a novel mixture of experts architecture that enables dynamically synthesizing a network by blending multiple experts using a gating network. We demonstrate the DSN in holographic 3D particle imaging for a variety of scattering conditions. We show in simulation that our DSN provides generalization across a continuum of scattering conditions. In addition, we show that by training the DSN entirely on simulated data, the network can generalize to experiments and achieve robust 3D descattering. We expect the same concept can find many other applications, such as denoising and imaging in scattering media. Broadly, our dynamic synthesis framework opens up a new paradigm for designing highly adaptive deep learning and computational imaging techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据