4.8 Article

A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared

期刊

LIGHT-SCIENCE & APPLICATIONS
卷 11, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41377-022-00777-w

关键词

-

类别

资金

  1. National Natural Science Foundation of China [62175025, 11974143, 11974142]
  2. Key Program of NSFC-Guangdong Joint Funds of China [U1801253]
  3. Outstanding Young Talents of Dalian [2021RJ07]
  4. Natural Science Foundation of Jilin Province [20200201252JC]

向作者/读者索取更多资源

This paper introduces a broadband photodetector constructed using ultraviolet luminescent concentrators, iodine-based perovskite quantum dots, and organic bulk heterojunctions. Experimental and theoretical results show that doping CsPbI3 PQDs with Er3+ can significantly improve their optoelectronic properties and stability. The photodetector shows high detectivity and stability in the UV and NIR regions.
Broadband photodetection (PD) covering the deep ultraviolet to near-infrared (200-1000 nm) range is significant and desirable for various optoelectronic designs. Herein, we employ ultraviolet (UV) luminescent concentrators (LC), iodine-based perovskite quantum dots (PQDs), and organic bulk heterojunction (BHJ) as the UV, visible, and near-infrared (NIR) photosensitive layers, respectively, to construct a broadband heterojunction PD. Firstly, experimental and theoretical results reveal that optoelectronic properties and stability of CsPbI3 PQDs are significantly improved through Er3+ doping, owing to the reduced defect density, improved charge mobility, increased formation energy, tolerance factor, etc. The narrow bandgap of CsPbI3:Er3+ PQDs serves as a visible photosensitive layer of PD. Secondly, considering the matchable energy bandgap, the BHJ (BTP-4Cl: PBDB-TF) is selected as to NIR absorption layer to fabricate the hybrid structure with CsPbI3:Er3+ PQDs. Thirdly, UV LC converts the UV light (200-400 nm) to visible light (400-700 nm), which is further absorbed by CsPbI3:Er3+ PQDs. In contrast with other perovskites PDs and commercial Si PDs, our PD presents a relatively wide response range and high detectivity especially in UV and NIR regions (two orders of magnitude increase that of commercial Si PDs). Furthermore, the PD also demonstrates significantly enhanced air- and UV- stability, and the photocurrent of the device maintains 81.5% of the original one after 5000 cycles. This work highlights a new attempt for designing broadband PDs, which has application potential in optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据