4.4 Article

Krylov complexity in saddle-dominated scrambling

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP05(2022)174

关键词

Field Theories in Lower Dimensions; Holography and Condensed Matter Physics (AdS/CMT); Integrable Field Theories

资金

  1. Ministry of Human Resource Development (MHRD), Government of India
  2. University Grants Commission (UGC), Government of India

向作者/读者索取更多资源

In this work, the exponential growth of Krylov complexity in an integrable system with saddle-dominated scrambling is investigated. The results show that this phenomenon is not limited to chaotic systems, but can also be observed in integrable systems.
In semi-classical systems, the exponential growth of the out-of-time-order correlator (OTOC) is believed to be the hallmark of quantum chaos. However, on several occasions, it has been argued that, even in integrable systems, OTOC can grow exponentially due to the presence of unstable saddle points in the phase space. In this work, we probe such an integrable system exhibiting saddle-dominated scrambling through Krylov complexity and the associated Lanczos coefficients. In the realm of the universal operator growth hypothesis, we demonstrate that the Lanczos coefficients follow the linear growth, which ensures the exponential behavior of Krylov complexity at early times. The linear growth arises entirely due to the saddle, which dominates other phase-space points even away from itself. Our results reveal that the exponential growth of Krylov complexity can be observed in integrable systems with saddle-dominated scrambling and thus need not be associated with the presence of chaos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据