4.4 Article

Anyon condensation: coherent states, symmetry enriched topological phases, Goldstone theorem, and dynamical rearrangement of symmetry

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP03(2022)026

关键词

Topological States of Matter; Anyons; Spontaneous Symmetry Breaking; Topological Field Theories

向作者/读者索取更多资源

In this paper, we establish the physical foundation of anyon condensation by building the effective Hamiltonian and the Hilbert space. We also generalize the Goldstone theorem to the case of anyon condensation and prove that the condensed phase is a symmetry enriched topological phase by constructing the corresponding symmetry transformations.
Although the mathematics of anyon condensation in topological phases has been studied intensively in recent years, a proof of its physical existence is tantamount to constructing an effective Hamiltonian theory. In this paper, we concretely establish the physical foundation of anyon condensation by building the effective Hamiltonian and the Hilbert space, in which we explicitly construct the vacuum of the condensed phase as the coherent states that are the eigenstates of the creation operators creating the condensate anyons. Along with this construction, which is analogous to Laughlin's construction of wavefunctions of fractional quantum hall states, we generalize the Goldstone theorem in the usual spontaneous symmetry breaking paradigm to the case of anyon condensation. We then prove that the condensed phase is a symmetry enriched (protected) topological phase by directly constructing the corresponding symmetry transformations, which can be considered as a generalization of the Bogoliubov transformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据