4.5 Article

Feature Generalization for Breast Cancer Detection in Histopathological Images

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s12539-022-00515-1

关键词

Representation learning; Feature engineering; Histopathological images; Breast cancer; Computer-aided diagnosis

向作者/读者索取更多资源

This study investigates transfer learning in computer-aided diagnosis of breast cancer and finds that using feature engineering and representation learning achieves high accuracy in classifying breast cancer images. Additionally, fusion-based techniques show superior feature learning capacity in breast cancer image classification.
Recent period has witnessed benchmarked performance of transfer learning using deep architectures in computer-aided diagnosis (CAD) of breast cancer. In this perspective, the pre-trained neural network needs to be fine-tuned with relevant data to extract useful features from the dataset. However, in addition to the computational overhead, it suffers the curse of overfitting in case of feature extraction from smaller datasets. Handcrafted feature extraction techniques as well as feature extraction using pre-trained deep networks come into rescue in aforementioned situation and have proved to be much more efficient and lightweight compared to deep architecture-based transfer learning techniques. This research has identified the competence of classifying breast cancer images using feature engineering and representation learning over the established and contemporary notion of using transfer learning techniques. Moreover, it has revealed superior feature learning capacity with feature fusion in contrast to the conventional belief of understanding unknown feature patterns better with representation learning alone. Experiments have been conducted on two different and popular breast cancer image datasets, namely, KIMIA Path960 and BreakHis datasets. A comparison of image-level accuracy is performed on these datasets using the above-mentioned feature extraction techniques. Image level accuracy of 97.81% is achieved for KIMIA Path960 dataset using individual features extracted with handcrafted (color histogram) technique. Fusion of uniform Local Binary Pattern (uLBP) and color histogram features has resulted in 99.17% of highest accuracy for the same dataset. Experimentation with BreakHis dataset has resulted in highest classification accuracy of 88.41% with color histogram features for images with 200X magnification factor. Finally, the results are contrasted to that of state-of-the-art and superior performances are observed on many occasions with the proposed fusion-based techniques. In case of BreakHis dataset, the highest accuracies 87.60% (with least standard deviation) and 85.77% are recorded for 200X and 400X magnification factors, respectively, and the results for the aforesaid magnification factors of images have exceeded the state-of-the-art.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据