4.8 Article

Perception of an object's global shape is best described by a model of skeletal structure in human infants

期刊

ELIFE
卷 11, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.74943

关键词

infant development; categorization; object recognition; medial axis; one-shot learning; shape perception; Human

类别

资金

  1. National Institutes of Health [T32 HD071845]

向作者/读者索取更多资源

By comparing infants to computational models, this study sheds light on the origins and mechanisms underlying shape representations. The findings suggest that infants can form robust shape representations based on the skeletal structure when faced with variations in objects.
Categorization of everyday objects requires that humans form representations of shape that are tolerant to variations among exemplars. Yet, how such invariant shape representations develop remains poorly understood. By comparing human infants (6-12 months; N=82) to computational models of vision using comparable procedures, we shed light on the origins and mechanisms underlying object perception. Following habituation to a never-before-seen object, infants classified other novel objects across variations in their component parts. Comparisons to several computational models of vision, including models of high-level and low-level vision, revealed that infants' performance was best described by a model of shape based on the skeletal structure. Interestingly, infants outperformed a range of artificial neural network models, selected for their massive object experience and biological plausibility, under the same conditions. Altogether, these findings suggest that robust representations of shape can be formed with little language or object experience by relying on the perceptually invariant skeletal structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据