4.6 Article

Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 10, 期 20, 页码 6699-6712

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.2c00781

关键词

techno-economic analysis; life cycle analysis; biofuels; renewable diesel

资金

  1. U.S. Department of Energy (DOE), Bioenergy Technologies Office (BETO)
  2. Vehicle Technologies Office (VTO) under the DOE Co-Optimization of Fuels and Engines Initiative
  3. Alliance for Sustainable Energy, LLC [DE-AC3608GO28308]
  4. UChicago Argonne, LLC [DE-AC0206CH11357]
  5. Battelle Memorial Institute [DE-AC05-76RL01830]

向作者/读者索取更多资源

Economic and environmental favorability are crucial for the development and deployment of sustainable fuels. This study conducted economic and sustainability analyses of 25 pathways for producing bioblendstocks. The results showed that most of the bioblendstocks had favorable economic metrics, but biochemically-based pathways faced challenges in achieving favorable minimum fuel selling price. Additionally, some pathways showed significant reductions in greenhouse gas emissions and fossil energy use.
Economic and environmental favorability are vital considerations for the large-scale development and deployment of sustainable fuels. Here, we have conducted economic and sustainability analyses of pathways for producing bioblendstocks optimized for improved combustion for mixing-controlled compression ignition (MCCI) engines. We assessed 25 pathways for the production of target fuels from renewable feedstocks and conducted techno-economic analysis (TEA) and life cycle analysis (LCA) to determine which bioblendstock candidates are likely to be viable given a slate of 19 metrics evaluating technology readiness, economic viability, and environmental impacts ranking each metric as either favorable, neutral, unfavorable, or unknown across a range of screening criteria. Among the results, we found that the economic metrics were largely favorable for most of the bioblendstocks. Of the near-term baseline cases, eight pathways offered the potential of a minimum fuel selling price (MFSP) of less than $5/gallon of gasoline equivalent (GGE). In comparison, under future target case scenarios, there is potential for seven pathways to reduce their fuel selling price to less than $4/GGE. Biochemically-based pathways struggled to achieve favorable target case MFSP under the processing approach taken here, but further economic improvements could be achieved when lignin valorization is included. Most of the conversion technologies were determined to be robust in that they would be minimally affected by the feedstock specifications and variations. However, given the early stage of development for most of the pathways, blending behavior and testing for regulatory limits are key data gaps as knowledge of how many of these bioblendstocks will perform when blended with existing fuels and how much can be added while still meeting fuel property specifications is still being assessed. Twelve pathways showed significant reductions in life cycle greenhouse gas (GHG) emissions greater than 60%, and 15 showed favorable fossil energy use reductions compared to conventional diesel fuel. Energy-intensive processes and the use of GHG-intensive chemicals such as sodium hydroxide contribute significantly to GHG emissions. Results from these analyses enable researchers and industry to assess the potential viability of MCCI bioblendstocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据