4.6 Article

Sustainable Modification of Polyethersulfone Membrane with Poly(Maleic Anhydride-Co-Glycerol) as Novel Copolymer

期刊

WATER
卷 14, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/w14081207

关键词

polyethersulfone; membrane modification; fouling; bovine serum albumin; Poly(Maleic Anhydride-Co-Glycerol)

向作者/读者索取更多资源

This study successfully synthesized PMG nanoparticles and incorporated them into PES membranes, leading to structural changes and improved performance, showing good water flux and protein retention.
This work presented an endeavour to fabricate sustainable and eco-friendly polyethersulfone (PES) ultrafiltration membranes. A novel and graft copolymer (Poly(Maleic Anhydride-Co-Glycerol)) (PMG) have been synthesized via a facile and rapid route to impart their hydrophilic features onto the final PES membrane. A series of characterization tools, for both nanoadditives and nanocomposite membranes, have been harnessed to confirm their successful fabrication processes. These include Fourier Transform Infrared Spectroscopy (FT-IR), scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), and contact angle measurements (CA). Results disclosed the successful synthesis of PMG nanoparticles that manifested a smooth homogenous surface with an average molecular size of 88.07 nm. The nanocomposite membrane structure has witnessed a gradual development upon each increment in the nanoparticle content ratio along with relatively thicker pore walls. The size and shape of figure-like micropores exhibited critical visible structural changes following the nanoadditive incorporation into the PES polymeric matrix. For the nanocomposite membrane, the SEM imaging indicated that a thicker active layer and less finger-like micropores were formed at higher PMG NP content within the membrane matrix. Hydrophilicity measurements disclosed a reversible correlation with the NP content where the CA angle value was at a minimum at the higher PMG loading content. Compared to the pristine membrane, a considerable enhancement in the performance of the modified membranes was witnessed. The membrane prepared using 2.5 g PMGNPs showcased six times higher pure water flux than neat PES membrane and maintained the highest retention (98%) against BSA protein solution. Additionally, the nanocomposite revealed promising antifouling and self-cleaning characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据