4.7 Article

Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest

期刊

REMOTE SENSING
卷 14, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/rs14061341

关键词

conservation management; Picea rubens; drone; UAV; orthoimagery; mortality; Whitetop Mountain; kernel density

资金

  1. Virginia Tech Department of Geography's Sidman P. Poole Endowment
  2. Virginia Tech Graduate Research Development Program

向作者/读者索取更多资源

This study demonstrates the use of drone-produced orthoimagery for assessing forest health and provides valuable information on stand mortality patterns and canopy gaps. The adoption of drone-based monitoring is important for conservation management.
Consumer-grade drone-produced digital orthoimagery is a valuable tool for conservation management and enables the low-cost monitoring of remote ecosystems. This study demonstrates the applicability of RGB orthoimagery for the assessment of forest health at the scale of individual trees in a 46-hectare plot of rare southern Appalachian red spruce forest on Whitetop Mountain, Virginia. We used photogrammetric Structure from Motion software Pix4Dmapper with drone-collected imagery to generate a mosaic for point cloud reconstruction and orthoimagery of the plot. Using 3-band RBG digital orthoimagery, we visually classified 9402 red spruce individuals, finding 8700 healthy (92.5%), 251 declining/dying (2.6%), and 451 dead (4.8%). We mapped individual spruce trees in each class and produced kernel density maps of health classes (live, dead, and dying). Our approach provided a nearly gap-free assessment of the red spruce canopy in our study site, versus a much more time-intensive field survey. Our maps provided useful information on stand mortality patterns and canopy gaps that could be used by managers to identify optimal locations for selective thinning to facilitate understory sapling regeneration. This approach, dependent mainly on an off-the-shelf drone system and visual interpretation of orthoimagery, could be applied by land managers to measure forest health in other spruce, or possibly spruce-fir, communities in the Appalachians. Our study highlights the usefulness of drone-produced orthoimagery for conservation monitoring, presenting a valid and accessible protocol for the monitoring and assessment of forest health in remote spruce, and possibly other conifer, populations. Adoption of drone-based monitoring may be especially useful in light of climate change and the possible displacement of southern Appalachian red spruce (and spruce-fir) ecosystems by the upslope migration of deciduous trees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据