4.7 Article

Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models

期刊

REMOTE SENSING
卷 14, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/rs14071714

关键词

CEEMDAN method; GA-SVM model; decomposition; prediction; water quality

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA23040304]
  2. National Nature Science Foundation of China [41890823]

向作者/读者索取更多资源

Urban water quality is deteriorating due to lack of monitoring data and complexity of urban water systems. The integration of different methods and models, supported by multi-remote sensing data, provides a better understanding of the mechanisms and dynamics of water quality changes. The developed integrated method successfully predicts urban water quality and suggests possible driving factors for deterioration.
Urban water quality is facing strongly adverse degradation in rapidly developing areas. However, there exists a huge challenge to estimating the inner features and predicting the variation of long-term water quality due to the lack of related monitoring data and the complexity of urban water systems. Fortunately, multi-remote sensing data, such as nighttime light and evapotranspiration (ET), provide scientific data support and reasonably reveal the variation mechanisms. Here, we develop an integrated decomposition-reclassification-prediction method for water quality by integrating the CEEMDN method, the RF method mothed, and the genetic algorithm-support vector machine model (GA-SVM). The degression of the long-term water quality was decomposed and reclassified into three different frequency terms, i.e., high-frequency, low-frequency, and trend terms, to reveal the inner mechanism and dynamics in the CEEMDAN method. The RF method was then used to identify the teleconnection and the significance of the selected driving factors. More importantly, the GA-SVM model was designed with two types of model schemes, which were the data-driven model (GA-SVMd) and the integrated CEEMDAN-GA-SVM model (defined as GA-SVMc model), in order to predict urban water quality. Results revealed that the high-frequency terms for NH3-N and TN had a major contribution to the water quality and were mainly dominated by hydrometeorological factors such as ET, rainfall, and the dynamics of the lake water table. The trend terms revealed that the water quality continuously deteriorated during the study period; the terms were mainly regulated by the land use and land cover (LULC), land metrics, population, and yearly rainfall. The predicting results confirmed that the integrated GA-SVMc model had better performance than single data-driven models (such as the GA-SVM model). Our study supports that the integrated method reveals variation rules in water quality and provides early warning and guidance for reducing the water pollutant concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据