4.7 Article

Multiple UAV Flights across the Growing Season Can Characterize Fine Scale Phenological Heterogeneity within and among Vegetation Functional Groups

期刊

REMOTE SENSING
卷 14, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/rs14051290

关键词

accuracy; classification; four-dimensional (4D) structure-from-motion (SfM); grassland; sagebrush; semi-arid; UAV; remote sensing

向作者/读者索取更多资源

UAVs can measure vegetation spectral patterns inexpensively and accurately, improving classification accuracy. Multiple UAV measurements can identify fine-scale phenological variability in complex mixed grass/shrub vegetation.
Grasslands and shrublands exhibit pronounced spatial and temporal variability in structure and function with differences in phenology that can be difficult to observe. Unpiloted aerial vehicles (UAVs) can measure vegetation spectral patterns relatively cheaply and repeatably at fine spatial resolution. We tested the ability of UAVs to measure phenological variability within vegetation functional groups and to improve classification accuracy at two sites in Montana, U.S.A. We tested four flight frequencies during the growing season. Classification accuracy based on reference data increased by 5-10% between a single flight and scenarios including all conducted flights. Accuracy increased from 50.6% to 61.4% at the drier site, while at the more mesic/densely vegetated site, we found an increase of 59.0% to 64.4% between a single and multiple flights over the growing season. Peak green-up varied by 2-4 weeks within the scenes, and sparse vegetation classes had only a short detectable window of active phtosynthesis; therefore, a single flight could not capture all vegetation that was active across the growing season. The multi-temporal analyses identified differences in the seasonal timing of green-up and senescence within herbaceous and sagebrush classes. Multiple UAV measurements can identify the fine-scale phenological variability in complex mixed grass/shrub vegetation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据