4.7 Article

A TIR-Visible Automatic Registration and Geometric Correction Method for SDGSAT-1 Thermal Infrared Image Based on Modified RIFT

期刊

REMOTE SENSING
卷 14, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/rs14061393

关键词

registration; geometric correction; modified RIFT; SDGSAT-1; thermal infrared image

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA19010401]

向作者/读者索取更多资源

High-resolution TIR remote sensing images can accurately retrieve land surface temperature and describe urban thermal environment. The study proposes a two-step orthorectification framework, improving registration performance and geometric accuracy of TIR images for thermal infrared applications.
High-resolution thermal infrared (TIR) remote sensing images can more accurately retrieve land surface temperature and describe the spatial pattern of urban thermal environment. The Thermal Infrared Spectrometer (TIS), which has high spatial resolution among spaceborne thermal infrared sensors at present, and global data acquisition capability, is one of the sensors equipped in the SDGSAT-1. It is an important complement to the existing international mainstream satellites. In order to produce standard data products, rapidly and accurately, the automatic registration and geometric correction method needs to be developed. Unlike visible-visible image registration, thermal infrared images are blurred in edge details and have obvious non-linear radiometric differences from visible images, which make it challenging for the TIR-visible image registration task. To address these problems, homomorphic filtering is employed to enhance TIR image details and the modified RIFT algorithm is proposed to achieve TIR-visible image registration. Different from using MIM for feature description in RIFT, the proposed modified RIFT uses the novel binary pattern string to descriptor construction. With sufficient and uniformly distributed ground control points, the two-step orthorectification framework, from SDGSAT-1 TIS L1A image to L4 orthoimage, are proposed in this study. The first experiment, with six TIR-visible image pairs, captured in different landforms, is performed to verify the registration performance, and the result indicates that the homomorphic filtering and modified RIFT greatly increase the number of corresponding points. The second experiment, with one scene of an SDGSAT-1 TIS image, is executed to test the proposed orthorectification framework. Subsequently, 52 GCPs are selected manually to evaluate the orthorectification accuracy. The result indicates that the proposed orthorectification framework is helpful to improve the geometric accuracy and guarantee for the subsequent thermal infrared applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据