4.7 Article

High-Content Lithium Aluminum Titanium Phosphate-Based Composite Solid Electrolyte with Poly(ionic liquid) Binder

期刊

POLYMERS
卷 14, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/polym14071274

关键词

lithium aluminum titanium phosphate; poly(ionic liquid); solid-state electrolyte; ionic conductivity; hardness

资金

  1. National Natural Science Foundation of China [52003307]
  2. Natural Science Foundation of Guangdong Province [2018A0303130204]
  3. Guangdong Science and Technology Special Fund (Major Projects + Task List) [2019067]
  4. Jieyang Science and Technology Plan Project [2019031]

向作者/读者索取更多资源

Composite solid electrolytes with polymer in ceramic were prepared using lithium aluminum titanium phosphate as a matrix and modified poly(ionic liquid) as a binder. The addition of a poly(ionic liquid)-based binder not only provided flexibility to the solid electrolytes, but also significantly improved their ionic conductivity. The highest ionic conductivity was achieved when the LATP content in the composite solid electrolytes was 50 wt.%. The study also examined the compression resistance of the electrolytes and found that the hardness was highest at a LATP content of 50 wt.%.
Solid electrolytes have been regarded as the most promising electrolyte materials for the next generation of flexible electronic devices due to their excellent safety and machinability. Herein, composite solid electrolytes (CSE) with polymer in ceramic are prepared by using lithium aluminum titanium phosphate (LATP) as a matrix and modified poly(ionic liquid) as a binder. The results revealed that adding a poly(ionic liquid)-based binder not only endowed good flexibility for solid electrolytes, but also significantly improved the ionic conductivity of the electrolytes. When the content of LATP in the CSE was 50 wt.%, the electrolyte obtained the highest ionic conductivity (1.2 x 10(-3) S center dot cm(-1)), which was one order of magnitude higher than that of the pristine LATP. Finally, this study also characterized the compression resistance of the composite solid-state electrolyte by testing the Vickers hardness, and the results showed that the hardness of the composite solid-state electrolyte can reach 0.9 +/- 0.1 gf/mm(2) at a LATP content of 50 wt.%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据