4.7 Article

Extraction of Nanocellulose for Eco-Friendly Biocomposite Adsorbent for Wastewater Treatment

期刊

POLYMERS
卷 14, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/polym14091852

关键词

nanocellulose; chitosan; microbeads; adsorption; isothermal models; direct dye removal

资金

  1. Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [G 327-829-38]

向作者/读者索取更多资源

In this study, nanocellulose extracted from palm leaves was synthesized into nanocellulose/chitosan nanocomposites for the removal of dyes from textile industrial wastewater. The nanocellulose/chitosan microbeads showed high adsorption capacity and were effective in the removal of direct blue 78 dye. This research provides a new platform for dye removal using eco-friendly adsorbents.
In the present study, nanocellulose was extracted from palm leaves to synthesize nanocellulose/chitosan nanocomposites for the removal of dyes from textile industrial wastewater. Nanocellulose is of interest in water purification technologies because of its high surface area and versatile surface chemistry. Following bleach, alkali, and acid treatments on palm leaves, nanocellulose is obtained as a white powder. The produced nanocellulose was investigated. The adsorption capacity of chitosan, nanocellulose, and novel synthetic nanocellulose/chitosan microbeads (CCMB) for direct blue 78 dye (DB78) removal was studied. A series of batch experiments were conducted in terms of adsorbent concentration, mixing time, pH, dye initial concentration, and nanocellulose concentration in synthetic microbeads. The CCMB was characterized by using physicochemical analysis, namely Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), zeta potential analysis, and Fourier-transform infrared spectroscopy (FTIR). It was found that the surface area of synthetic CCMB is 10.4 m(2)/g, with a positive net surface charge. The adsorption tests showed that the dye removal efficiency increases with an increasing adsorbent concentration. The maximum removal efficiencies were 91.5% and 88.4%, using 14 and 9 g/L of CCMB-0.25:1. The initial dye concentrations were 50 and 100 mg/L under acidic conditions (pH = 3.5) and an optimal mixing time of 120 min. The equilibrium studies for CCMB-0.25:1 showed that the equilibrium data were best fitted to Langmuir isothermal model with R-2 = 0.99. These results revealed that nanocellulose/chitosan microbeads are an effective eco-adsorbent for the removal of direct blue 78 dye and provide a new platform for dye removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据