4.7 Article

Cost Function Analysis Applied to Different Kinetic Release Models of Arrabidaea chica Verlot Extract from Chitosan/Alginate Membranes

期刊

POLYMERS
卷 14, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/polym14061109

关键词

cost function; controlled release; Arrabidae chica Verlot; chitosan; alginate membranes

资金

  1. FONDECYT, Chile [11180395]
  2. National Council for Scientific and Technological Development, Brazil [307829 /2018-9, 152053/2014-0]
  3. Coordination for the Improvement of Higher Education Personnel, Brazil [001]

向作者/读者索取更多资源

This work focuses on the mathematical analysis of the controlled release of A. chica extract from chitosan/alginate membranes. The results indicate that the Weibull model provides the best simulation for the release profiles from the four tested membranes.
This work focuses on the mathematical analysis of the controlled release of a standardized extract of A. chica from chitosan/alginate (C/A) membranes, which can be used for the treatment of skin lesions. Four different types of C/A membranes were tested: a dense membrane (CA), a dense and flexible membrane (CAS), a porous membrane (CAP) and a porous and flexible membrane (CAPS). The Arrabidae chica extract release profiles were obtained experimentally in vitro using PBS at 37 degrees C and pH 7. Experimental data of release kinetics were analyzed using five classical models from the literature: Zero Order, First Order, Higuchi, Korsmeyer-Peppas and Weibull functions. Results for the Korsmeyer-Peppas model showed that the release of A. chica extract from four membrane formulations was by a diffusion through a partially swollen matrix and through a water filled network mesh; however, the Weibull model suggested that non-porous membranes (CA and CAS) had fractal geometry and that porous membranes (CAP and CAPS) have highly disorganized structures. Nevertheless, by applying an explicit optimization method that employs a cost function to determine the model parameters that best fit to experimental data, the results indicated that the Weibull model showed the best simulation for the release profiles from the four membranes: CA, CAS and CAP presented Fickian diffusion through a polymeric matrix of fractal geometry, and only the CAPS membrane showed a highly disordered matrix. The use of this cost function optimization had the significant advantage of higher fitting sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据