4.7 Article

Regulation of epitope exposure in the gp41 membrane-proximal external region through interactions at the apex of HIV-1 Env

期刊

PLOS PATHOGENS
卷 18, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1010531

关键词

-

资金

  1. NIH NIAID [AI150490]

向作者/读者索取更多资源

Surface glycoprotein Env of HIV-1 plays a crucial role in viral entry and is a key target for neutralizing antibodies. This study investigated the regulation of the exposure of the gp41 membrane-proximal external region (MPER) by inter- and intra-gp120 interactions mediated by the V1/V2 and V3 loops. The results revealed that swapping V3 loops and altering V3-loop charge had significant effects on antibody access to the MPER epitope and suggested a new structural fluctuation during Env activation.
Author summarySurface glycoprotein Env is the main target for neutralizing antibodies elicited by HIV-1 vaccines. Env spontaneously fluctuates among different structures, limiting exposure of many attractive antibody-binding epitopes and, thereby, confounding vaccine development. To characterize these fluctuations, we examined how exposure of the MPER epitope found at the base of Env is regulated by interactions of the V3 loop located in the apex. Starting with an extremely flexible Env with a readily-exposed MPER, we identified two alterations that substantially restricted antibody access to the epitope. The first, a wholesale swap of V3 loops between HIV-1 strains, energetically stabilized Env in a closed structure that restricted access to antibodies throughout the protein. The second, a point mutation that altered V3-loop charge, specifically destabilized the MPER-exposed conformation but had minimal impact on antibody access to Env regions in between the apex and base. The results indicate that MPER exposure is not explicitly tied to the dynamics of Env regions between the apex and base and suggest a new structural fluctuation during Env activation. Glycoprotein Env of human immunodeficiency virus type 1 (HIV-1) mediates viral entry through membrane fusion. Composed of gp120 and gp41 subunits arranged as a trimer-of-heterodimers, Env adopts a metastable, highly dynamic conformation on the virion surface. This structural plasticity limits the temporospatial exposure of many highly conserved, neutralizing epitopes, contributing to the difficulty in developing effective HIV-1 vaccines. Here, we employed antibody neutralization of HIV-1 infectivity to investigate how inter- and intra-gp120 interactions mediated by variable loops V1/V2 and V3 at the Env apex regulate accessibility of the gp41 membrane-proximal external region (MPER) at the Env base. Swapping the V3 loop from Env(SF162) into the Env(HXB2) background shifted MPER exposure from the prefusogenic state to a functional intermediate conformation that was distinct from the prehairpin-intermediate state sensitive to gp41-targeted fusion inhibitors. The V3-loop swap had a profound impact on global protein dynamics, biasing the equilibrium to a closed conformation resistant to most anti-gp120 antibodies, stabilizing the protein to both cold- and soluble CD4-induced Env inactivation, and increasing the CD4 requirements for viral entry. Further dissection of the Env(HXB2) V3 loop revealed that residue 306 uniquely modulated epitope exposure and trimer stability. The R306S substitution substantially decreased sensitivity to antibodies targeting the gp41 MPER and, surprisingly, the gp120 V3-loop crown (residues 312-315), but had only modest effects on exposure of intervening gp120 epitopes. Furthermore, the point mutation reduced soluble CD4-induced inactivation, but had no impact on cold inactivation. The residue appeared to exert its effects by electrostatically modifying the strength of intra-subunit interactions between the V1/V2 and V3 loops. The distinct patterns of neutralization and stability pointed to a novel prefusogenic Env conformation along the receptor activation pathway and suggested that apical Env-regulation of gp41 MPER exposure can be decoupled from much of the dynamics of gp120 subunits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据