4.6 Article

A bio-mimetic miniature drone for real-time audio based short-range tracking

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1009936

关键词

-

资金

  1. Boris Mints Institute
  2. Dr Alexander Lester and Eva Lester fellowship

向作者/读者索取更多资源

Animals have the ability to track other animals based on their sound emissions. This study aims to mimic this ability by developing a bio-inspired electronic circuit placed on a miniature drone. The circuit can detect sound signals and steer the drone accordingly to track the sound emitting target. The research shows promising results and has implications for understanding animal behavior and developing related technologies.
One of the most difficult sensorimotor behaviors exhibited by flying animals is the ability to track another flying animal based on its sound emissions. From insects to mammals, animals display this ability in order to localize and track conspecifics, mate or prey. The pursuing individual must overcome multiple non-trivial challenges including the detection of the sounds emitted by the target, matching the input received by its (mostly) two sensors, localizing the direction of the sound target in real time and then pursuing it. All this has to be done rapidly as the target is constantly moving. In this project, we set to mimic this ability using a physical bio-mimetic autonomous drone. We equipped a miniature commercial drone with our in-house 2D sound localization electronic circuit which uses two microphones (mimicking biological ears) to localize sound signals in real-time and steer the drone in the horizontal plane accordingly. We focus on bat signals because bats are known to eavesdrop on conspecifics and follow them, but our approach could be generalized to other biological signals and other man-made signals. Using two different experiments, we show that our fully autonomous aviator can track the position of a moving sound emitting target and pursue it in real-time. Building an actual robotic-agent, forced us to deal with real-life difficulties which also challenge animals. We thus discuss the similarities and differences between our and the biological approach. Author summaryAnimals solve problems that are considered very difficult for human engineers. In this study, we aimed to mimic animals' ability to localize and track a moving sound source in real time. We do so using a bio-inspired approach by developing a miniature electronic circuit with two ear-like microphones and a micro-processor that is placed on a miniature drone. The circuit detects ultrasonic signals that are typical for echolocating bats and it uses its two 'ears' to estimate the azimuth of the sound source and to steer the drone accordingly. The system is completely autonomous without external human intervention. We focus on bat signals as a proof of concept, but we can alter the electronics to suit other biological signals. Future research will include groups of multiple drones moving together based on acoustic signals as bats and some birds can do in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据