4.6 Article

Characterising metabolomic signatures of lipid-modifying therapies through drug target mendelian randomisation

期刊

PLOS BIOLOGY
卷 20, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.3001547

关键词

-

资金

  1. UK Medical Research Council
  2. British Heart Foundation Intermediate Clinical Research Fellowship [FS/18/23/33512]
  3. National Institute for Health Research Oxford Biomedical Research Centre
  4. Medical Research Council Integrative Epidemiology Unit at the University of Bristol [MC_UU_00011/1]

向作者/读者索取更多资源

Large-scale molecular profiling and genotyping allow for systematic comparison of the genetically predicted effects of therapeutic targets on the human metabolome. These effects were generally consistent for coronary artery disease risk, but could differ significantly in metabolic traits.
Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1), high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r(2) = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r(2) < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据