4.7 Article

Quantum-Logic Gate between Two Optical Photons with an Average Efficiency above 40%

期刊

PHYSICAL REVIEW X
卷 12, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.12.021035

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft under priority program 1929 GiRyd and under Germany's excellence strategy via Munich Center for Quantum Science and Technology [EXC-2111-390814868]
  2. Studienstiftung des deutschen Volkes

向作者/读者索取更多资源

This article introduces a new platform aimed at improving the efficiency of optical qubit logic gates. By combining the characteristics of two established quantum nonlinear systems, researchers have achieved a CNOT gate between two optical photons and generated entangled states of up to five photons.
Optical qubits uniquely combine information transfer in optical fibers with a good processing capability and are therefore attractive tools for quantum technologies. A large challenge, however, is to overcome the low efficiency of two-qubit logic gates. The experimentally achieved efficiency in an optical controlled NOT (cNoT) gate reached approximately 11% in 2003 and has seen no increase since. Here, we report on a new platform that was designed to surpass this long-standing record. The new scheme avoids inherently probabilistic protocols and, instead, combines aspects of two established quantum nonlinear systems: atom-cavity systems and Rydberg electromagnetically induced transparency. We demonstrate a CNOT gate between two optical photons with an average efficiency of 41.7(5)% at a postselected process fidelity of 81(2)%. Moreover, we extend the scheme to a CNOT gate with multiple target qubits and produce entangled states of presently up to five photons. All these achievements are promising and have the potential to advance optical quantum information processing in which almost all advanced protocols would profit from high-efficiency logic gates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据