4.6 Article

Regulation of TRPP3 Channel Function by N-terminal Domain Palmitoylation and Phosphorylation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 291, 期 49, 页码 25678-25691

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M116.756544

关键词

acetylation; electrophysiology; phosphorylation; post-translational modification (PTM); Xenopus

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. National Natural Science Foundation of China [8157041737, 81602448]
  3. Alberta Innovates-Doctoral Graduate Student Scholarship

向作者/读者索取更多资源

Transient receptor potential polycystin-3 (TRPP3) is a cation channel activated by calcium and proton and is involved in hedgehog signaling, intestinal development, and sour tasting. How TRPP3 channel function is regulated remains poorly understood. By N-terminal truncation mutations, electrophysiology, and Xenopus oocyte expression, we first identified fragment Asp-21-Ser-42 to be functionally important. We then found that deletion mutant 1-36 (TRPP3 missing fragment Met-1-Arg-36) has a similar function as wild-type TRPP3, whereas 1-38 is functionally dead, suggesting the importance of Val-37 or Cys-38. Further studies found that Cys-38, but not Val-37, is functionally critical. Cys-38 is a predicted site of palmitoylation, and indeed TRPP3 channel activity was inhibited by palmitoylation inhibitor 2-bromopalmitate and rescued by palmitoylation substrate palmitic acid. The TRPP3 N terminus (TRPP3NT, Met-1-Leu-95) localized along the plasma membrane of HEK293 cells but stayed in the cytoplasm with 2-bromopalmitate treatment or C38A mutation, indicating that TRPP3NT anchors to the surface membrane through palmitoylation at Cys-38. By acyl-biotin exchange assays, we showed that TRPP3, but not mutant C38A, is indeed palmitoylated. When putative phosphorylation sites near Cys-38 were mutated to Asp or Glu to mimic phosphorylation, only T39D and T39E reduced TRPP3 function. Furthermore, TRPP3NT displayed double bands in which the upper band was abolished by phosphatase treatment or T39A mutation. However, palmitoylation at Cys-38 and phosphorylation at Thr-39 independently regulated TRPP3 channel function, in contrast to previous reports about correlated palmitoylation with a proximate phosphorylation. Palmitoylation at Cys-38 represents a novel mechanism of functional regulation for TRPP3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据