4.7 Article

Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres

Caiyue Wen et al.

Summary: This study successfully assembled double-shell MXene@Ni microspheres using a spheroidization strategy to improve microwave absorption performance. The structure offers massive accessible active surfaces and the introduction of Ni nanospikes provides additional magnetic loss capacity.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

Initiating VB-Group Laminated NbS2 Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48 GHz through Phase Engineering Modulation

Huibin Zhang et al.

Summary: VB-Group NbS2 nanosheets prepared through a facile one-step solvothermal method exhibit remarkable electromagnetic wave absorption performance, showing tunable absorbing frequency bands (C-, X-, and Ku-bands) and the ability to adjust performance by changing material contents.

ADVANCED FUNCTIONAL MATERIALS (2022)

Review Chemistry, Multidisciplinary

Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities

Leilei Liang et al.

Summary: Electromagnetic absorbers are playing increasingly essential role in the electronic information age and even towards the coming intelligent era. The advantages of heterointerface engineering and its EM characteristics inject vitality for designing high-efficiency EM absorbers, but there are still huge challenges in understanding and reinforcing these interface effects.

ADVANCED MATERIALS (2022)

Article Chemistry, Physical

Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation

Yan Wang et al.

Summary: This paper successfully designed a 3D hierarchical Co/CNS/rGO magnetic-dielectric composite with controllable composition and microstructure as a high-efficiency absorber, displaying strong microwave attenuation and broad absorption frequency band. The nanocomposite with porous structure promoted multiple reflection and scattering, thereby improving the attenuation capacity.

CARBON (2022)

Article Engineering, Environmental

CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption

Renxin Xu et al.

Summary: An ultralight magnetic-carbon hybrid material was designed to achieve superior microwave absorption performances through self-assembly and compositional control, offering new insights for designing highly effective microwave absorbers.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Physical

Conductive substrates-based component tailoring via thermal conversion of metal organic framework for enhanced microwave absorption performances

Xiaogu Huang et al.

Summary: This study demonstrated the importance of component tailoring for optimizing the electromagnetic properties of conductive substrates-based composites. Fe-based metal oxides modified rGO microwave absorbers were prepared through hydrothermal treatment and pyrolysis, showing enhanced microwave absorption performance. CST simulation confirmed the effectiveness of the composite in actual far-field microwave absorption analysis.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2022)

Article Chemistry, Multidisciplinary

MoS2/MXene Aerogel with Conformal Heterogeneous Interfaces Tailored by Atomic Layer Deposition for Tunable Microwave Absorption

Junjie Yang et al.

Summary: In this study, a 3D porous MoS2/MXene hybrid aerogel structure was constructed by atomic layer deposition (ALD) to optimize the microwave absorption performance. The optimized MoS2/MXene hybrid aerogel showed a minimum reflection loss of -61.65 dB at a thickness of 4.53 mm. Additionally, it had desirable properties such as lightweightness, high surface area, mechanical strength, and hydrophobicity, making it suitable for practical applications.

ADVANCED SCIENCE (2022)

Article Chemistry, Multidisciplinary

Tailoring Self-Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward High-Performance Consecutive Multi-Band Electromagnetic Wave Absorption at Gigahertz

Junye Cheng et al.

Summary: This study demonstrates the use of bi-metallic organic frameworks as electromagnetic wave absorbers, achieving broad frequency band and strong absorption capabilities. The rational selection of materials and structure manipulation enhance the performance of electromagnetic wave absorption. This work opens up new possibilities for the development of broadband and strong electromagnetic wave absorbers.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Physical

Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption

Runrun Cheng et al.

Summary: The study successfully prepared plum-like NiCo@C composite with strong microwave absorption performance at 20wt% loading. The unique plum-like structure enriched the non-uniform interface, structural anisotropy facilitated electromagnetic wave dissipation, and magnetic coupling contributed to the coordination of electromagnetic characteristics.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2022)

Review Nanoscience & Nanotechnology

State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials

Shuning Ren et al.

Summary: This review comprehensively discusses the recent research progress on metal-organic framework (MOF)-derived high-performance microwave absorption materials (MAMs), including the categorization, design principles, preparation methods, and the relationship between microwave absorption mechanisms and microstructures of MAMs. The current challenges and future prospects for MOF-derived MAMs are also discussed.

NANO-MICRO LETTERS (2022)

Article Physics, Applied

Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio

Jia Xu et al.

Summary: An efficient strategy for constructing ultralight electromagnetic wave absorbers with strong absorption performance was proposed in this study. N-doped graphene aerogels containing isolated single cobalt atoms (Co-SAs/GAs) were successfully synthesized and exhibited excellent absorption performance. The relationship between the single-atom structure and electromagnetic wave absorption property was comprehensively investigated through theoretical calculations and experimental results.

APPLIED PHYSICS REVIEWS (2022)

Review Engineering, Multidisciplinary

A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption

Dandan Zhi et al.

Summary: Graphene aerogels with unique properties have attracted considerable attention, especially in high-performance electromagnetic wave attenuation. The three-dimensional network and incorporation of other lossy materials contribute to the improvement of microwave absorption efficiency. Current research focuses on synthetic strategies, structural characteristics, and multifunctional microwave absorbing materials based on graphene aerogels.

COMPOSITES PART B-ENGINEERING (2021)

Article Engineering, Environmental

Design of cellular structure of graphene aerogels for electromagnetic wave absorption

Xiaogu Huang et al.

Summary: The controlled manipulation of pore structure in reduced graphene oxide aerogels through freeze-thaw assembly has led to the development of ultralight and highly porous aerogels with outstanding microwave absorption performance. This work demonstrates the promising application of pore structure engineering in producing lightweight and multifunctional graphene aerogel-based microwave absorbers for complex environmental conditions.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption

Bin Quan et al.

Summary: This study proposes a dual-principle strategy to investigate the impact of utilizing conductive absorption fillers and artificial structures on absorption performance. By combining microscopic and macroscopic design, the effective operating bandwidth of microwave has been fundamentally extended.

NANO RESEARCH (2021)

Review Nanoscience & Nanotechnology

A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials

Zhiwei Zhang et al.

Summary: The development of microwave absorption materials (MAMs) is crucial due to the threat electromagnetic waves pose to human health. Metal-organic frameworks (MOFs) have been highly studied for their diverse properties and ability to transform into porous carbon (PC). Researchers are exploring ways to improve absorption performance by coupling MOFs with other materials.

NANO-MICRO LETTERS (2021)

Article Chemistry, Multidisciplinary

Growth of NiAl-Layered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application

Xuefei Xu et al.

Summary: The newly developed NiAl-LDH/G composite, synthesized by atomic-layer-deposition-assisted in situ growth, exhibits excellent microwave absorption performance and corrosion resistance, showing great potential for practical applications.

ADVANCED SCIENCE (2021)

Article Materials Science, Multidisciplinary

MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption

Sai Gao et al.

Summary: In this study, a series of MOFs derived magnetic porous carbon microspheres with tunable diameter and high specific surface area have been successfully synthesized via a pyrolysis process. These carbon microspheres exhibit high-performance microwave absorption with low filler loading, showing potential for practical applications.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2021)

Article Chemistry, Physical

Hollow Porous Bowl-like Nitrogen-Doped Cobalt/Carbon Nanocomposites with Enhanced Electromagnetic Wave Absorption

Jin Liang et al.

Summary: A unique hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposite (HBN-Co/C) with Co nano-particles anchored in N-doped porous carbon was designed to enhance electromagnetic microwave absorption (EMA). The internal cavities of the material could be adjusted to match the impedance and permittivity between the absorber and air, resulting in precise adjustment of EMA performance through synergistic effects of multiple components, reflections, and scatterings. This design strategy led to excellent EMA performance with strong absorption and broad bandwidth.

CHEMISTRY OF MATERIALS (2021)

Review Chemistry, Physical

Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review

Junye Cheng et al.

Summary: This article reviews the research progress of high-efficiency EM wave absorbers with multiple interfaces and dielectric/magnetic heterostructures, discussing EM attenuation mechanisms and proposing challenges for future development.

JOURNAL OF MATERIOMICS (2021)

Article Chemistry, Multidisciplinary

Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance

Luyang Liang et al.

Summary: The study successfully developed a three-dimensional dielectric/magnetic aerogel with superior absorption performance, broad absorption bandwidth, and excellent electromagnetic wave absorbing capabilities, demonstrating potential for stable and durable electromagnetic applications.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

Hollow Engineering to Co@N-Doped Carbon Nanocages via Synergistic Protecting-Etching Strategy for Ultrahigh Microwave Absorption

Panbo Liu et al.

Summary: A controlled synergistic protecting-etching strategy was proposed to construct hollow Co@N-doped carbon nanocages with uniform heterojunctions, addressing the shortcomings of using sacrificing templates or corrosive agents and exhibiting superior microwave absorption performance. The strategy not only provides inspiration for creating hollow void inside other MOFs crystals, but also broadens the candidates for lightweight and high-efficient microwave absorbers.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Engineering, Environmental

Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures

Xinfeng Zhou et al.

Summary: NiCo based spinel materials have been considered promising electromagnetic wave absorbing materials due to their controllable structure, inexpensive procedure, and excellent dielectric property. The synthesis of NiCo2Se4 and NiCo2Te4 has shown remarkable absorption performance, providing important reference for expanding the application of NiCo-based spinel in the field of electromagnetic wave absorption.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances

Xiaogu Huang et al.

Summary: This study investigated the impact of permeability dissipation contribution relative to permittivity in micro/nano-magnetic absorbers, and systematically explored the loss contribution in this area for the first time.

NANO RESEARCH (2021)

Article Chemistry, Multidisciplinary

Lightweight, Fire-Retardant, and Anti-Compressed Honeycombed-Like Carbon Aerogels for Thermal Management and High-Efficiency Electromagnetic Absorbing Properties

Jia Xu et al.

Summary: In this study, honeycombed-like carbon aerogels with embedded Co@C nanoparticles were successfully fabricated by directionally freeze-casting and carbonization method, showing excellent electromagnetic wave absorption properties, low density, fire-retardant properties, and high thermal management capabilities.
Article Nanoscience & Nanotechnology

Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption

Yongpeng Zhao et al.

Summary: The study successfully synthesized hierarchical carbon aerogels with different dimensional structures, achieving excellent microwave absorption performance and impedance matching by controlling various structural units, providing important guidance and inspiration for the design of electromagnetic wave attenuation materials.

NANO-MICRO LETTERS (2021)

Review Nanoscience & Nanotechnology

Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review

Honghong Zhao et al.

Summary: Magnetic carbon-based composites are ideal for electromagnetic absorption, but their properties are highly dependent on precursors. Therefore, it is necessary to develop methods to effectively regulate the electromagnetic properties of these composites.

NANO-MICRO LETTERS (2021)

Article Chemistry, Physical

Anchoring porous carbon nanoparticles on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution

Honghong Zhao et al.

Summary: The article introduces a method to improve the electromagnetic performance of carbon/carbon composites by growing ZIF-8 nanocrystals on the surface of CNTs and converting them into PCNs/CNTs composites. By adjusting the content of PCNs and CNTs, excellent EM absorption performance can be achieved, which is significant for enhancing MAMs.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption

Dawei Liu et al.

Summary: Hierarchical microstructures, specifically the double-hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres, have been successfully designed and fabricated with optimal absorption characteristics in high-performance microwave absorbing materials. The unique architecture of NC@NCNTs provides stronger dipole orientation, interfacial polarization relaxation, conductive loss, and multiple reflection effects for incident electromagnetic waves, demonstrating superior performance compared to previous Ni/C composites.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Materials Science, Ceramics

Synthesis of broad microwave absorption bandwidth Zr4+-Ni2+ ions gradient-substituted barium ferrite

Yanting Zhang et al.

CERAMICS INTERNATIONAL (2020)

Article Nanoscience & Nanotechnology

Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode

Gaofeng Shao et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Green & Sustainable Science & Technology

Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution

Junye Cheng et al.

ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY (2020)

Article Chemistry, Multidisciplinary

On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing

Gaofeng Shao et al.

CHEMICAL COMMUNICATIONS (2020)

Article Chemistry, Multidisciplinary

CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption

Qinghe Liu et al.

ADVANCED MATERIALS (2016)

Article Materials Science, Ceramics

Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth

Dongbin Zhu et al.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2008)