4.4 Article

Synergistic enhancement of formic acid electro-oxidation on PtxCuy co-electrodeposited binary catalysts

期刊

JOURNAL OF SAUDI CHEMICAL SOCIETY
卷 26, 期 2, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jscs.2022.101437

关键词

co-electrodeposition; Fuel cells; Pt-Cu; Catalyst poisoning; Formic acid

向作者/读者索取更多资源

A binary catalyst composed of Pt and Cu was electrodeposited onto a glassy carbon substrate for formic acid electro-oxidation reaction. The simultaneous co-electrodeposition of Pt and Cu allowed for the tuning of catalyst functionality and improved catalytic activity and tolerance against CO poisoning.
A propitious binary catalyst composed of Pt and Cu which were electrodeposited simultaneously onto a glassy carbon (GC) substrate was recommended for the formic acid (FA) electro-oxidation reaction (FAOR); the principal anodic reaction in the direct FA fuel cells (DFAFCs). The simultaneous co-electrodeposition of Pt and Cu in the catalyst provided an opportunity to tune the geometric functionality of the catalyst to resist the adsorption of poisoning CO at the Pt surface that represented the major impediment for DFAFCs marketing. The catalytic activity of the catalyst toward FAOR was significantly influenced by the (Pt4+/Cu2+) molar ratio of the electrolyte during electrodeposition, which also affected the surface coverage of Pt and Cu in the catalyst. Interestingly, with a molar (Pt4+/Cu2+) ratio of (1:4), the catalyst sustained superior (3.58 com-pared to 0.65 obtained at the pristine Pt/GC catalyst) activity for FAOR, concurrently with up to four-times (0.73 compared to 0.18 obtained at the pristine Pt/GC catalyst) improvement in the catalytic tolerance against CO poisoning. This associated, surprisingly, a negative shift of ca. 336 mV in the onset potential of FAOR, in an indication for the competitiveness of the catalyst to minimize superfluous polarizations in DFAFCs. Furthermore, it offered a better (ended up with 20% loss in the activity) stability for continuous (1 h) electrolysis than pristine Pt/GC catalyst (the loss reached 35%). The impedance and CO stripping measurements together excluded the electronic element but confirmed the geometrical influence in the catalytic enhancement.& nbsp;(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据