4.2 Article

Machine Learning-Based Performance Comparison to Diagnose Anterior Cruciate Ligament Tears

期刊

JOURNAL OF HEALTHCARE ENGINEERING
卷 2022, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2022/2550120

关键词

-

向作者/读者索取更多资源

The study aimed to identify three ACL tear conditions using machine learning models and compared their performance. It took into account the imbalanced data distribution, which is often challenging for machine learning techniques. The results showed that after hyperparameter adjustment and oversampling, the four models achieved high accuracy on the balanced ACL dataset.
In recent times, knee joint pains have become severe enough to make daily tasks difficult. Knee osteoarthritis is a type of arthritis and a leading cause of disability worldwide. The middle of the knee contains a vital portion, the anterior cruciate ligament (ACL). It is necessary to diagnose the ACL ruptured tears early to avoid surgery. The study aimed to perform a comparative analysis of machine learning models to identify the condition of three ACL tears. In contrast to previous studies, this study also considers imbalanced data distributions as machine learning techniques struggle to deal with this problem. The paper applied and analyzed four machine learning classification models, namely, random forest (RF), categorical boosting (Cat Boost), light gradient boosting machines (LGBM), and highly randomized classifier (ETC) on the balanced, structured dataset of ACL. After oversampling a hyperparameter adjustment, the above four models have achieved an average accuracy of 95.72%, 94.98%, 94.98%, and 98.26%. There are 2070 observations and eight features in the collection of three diagnosis ACL classes after oversampling. The area under curve value was approximately 0.998, respectively. Experiments were performed using twelve machine learning algorithms with imbalanced and balanced datasets. However, the accuracy of the imbalanced dataset has remained under 76% for all twelve models. After oversampling, the proposed model may contribute to the investigation of ACL tears on magnetic resonance imaging and other knee ligaments efficiently and automatically without involving radiologists.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据