4.6 Article

Numerical simulation on radiation and energy of blast-induced seismic waves in deep rock masses

期刊

JOURNAL OF CENTRAL SOUTH UNIVERSITY
卷 29, 期 2, 页码 645-662

出版社

JOURNAL OF CENTRAL SOUTH UNIV
DOI: 10.1007/s11771-022-4908-x

关键词

blasting; in-situ stress; seismic wave; rock fracture; SPH-FEM

资金

  1. National Natural Science Foundation of China [51969015, U1765207]
  2. Natural Science Foundation of Jiangxi Province, China [20192ACB21019, 20181BAB206047]

向作者/读者索取更多资源

This study investigates the effects of in-situ stress on blast-induced rock fracture and seismic wave radiation through numerical simulations. The results show that an increase in in-situ stress leads to a reduction in the size of the fractured zone, resulting in a higher frequency content of the seismic waves.
With regard to blasting in deep rock masses, it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation. However, little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress. In this study, the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method. The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition. As the in-situ stress level increases, the size of the fractured zone is significantly reduced, and more explosion energy is transformed into seismic energy. A reduction in the size of the fractured zone (seismic wave source zone) results in a higher frequency content of the seismic waves. In a nonhydrostatic in-situ stress field, blast-induced cracks are most suppressed in the direction of the minimum in-situ stress, and thus the seismic waves generated in this direction have the highest energy density. In addition to P-waves, S-waves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field. The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据