4.6 Article

Diabetes Mellitus-Related Neurobehavioral Deficits in Mice Are Associated With Oligodendrocyte Precursor Cell Dysfunction

期刊

FRONTIERS IN AGING NEUROSCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnagi.2022.846739

关键词

cognition; behavior; diabetes; oligodendrocyte precursor cells; white matter

向作者/读者索取更多资源

Recent clinical studies have shown an increased incidence of neurobehavioral disorders in patients with diabetes mellitus. The severity of diabetes is associated with the progression of white matter hyperintensity on brain imaging, which increases the risk of cognitive impairment. This study investigated whether hyperglycemia-induced neurological deficits are related to dysfunction of oligodendrocyte precursor cells.
Recent clinical studies demonstrated an increase of the incidence of neurobehavioral disorders in patients with diabetes mellitus. Studies also found an association between severity of diabetes mellitus and the progression of white matter hyperintensity on magnetic resonance imaging, which conferred risk for developing cognitive impairment. Since oligodendrocyte precursor cells participated in the white matter repair and remodeling after ischemic brain injury, we explored whether hyperglycemia induced neurobehavioral deficits were associated with dysfunction of oligodendrocyte precursor cells. Adult male C57BL/6 mice (n = 40) were randomly divided into 4-week diabetes, 8-week diabetes, and control groups. Experimental diabetic mice were induced by streptozotocin injection. Learning and cognitive function, exploratory, anxiety and depression behaviors were assessed by Morris water maze, open field test, elevated plus maze, and tail suspension test, respectively. Immunofluorescence staining of neuron-glial antigen 2 and myelin basic protein were performed. Oligodendrocyte precursor cells were cultured in different glucose level to explore possible mechanism in vitro. The learning and cognitive function of 4-week and 8-week diabetic mice were attenuated compared to the control group (p < 0.05). The diabetic mice had less exploratory behavior compared to the control (p < 0.05). However, the diabetic mice were more likely to show anxiety (p < 0.05) and depression (p < 0.01) compared to the control. Further study demonstrated the number of oligodendrocyte precursor cells and the level of myelin basic protein expression were decreased in diabetic mice and the migration and survival ability were suppressed in the hyperglycemic environment in vitro (p < 0.05). Our results demonstrated that diabetes mellitus induced neurological deficits were associated with the decreased number and dysfunction of oligodendrocyte precursor cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据