4.4 Review

Enterococcal Sex Pheromones: Evolutionary Pathways to Complex, Two-Signal Systems

期刊

JOURNAL OF BACTERIOLOGY
卷 198, 期 11, 页码 1556-1562

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00128-16

关键词

-

资金

  1. HHS \ National Institutes of Health (NIH) [GM49530]
  2. Kempestiftelserna (Kempe Foundations) [JCK-1524]

向作者/读者索取更多资源

Gram-positive bacteria carry out intercellular communication using secreted peptides. Important examples of this type of communication are the enterococcal sex pheromone systems, in which the transfer of conjugative plasmids is controlled by intercellular signaling among populations of donors and recipients. This review focuses on the pheromone response system of the conjugative plasmid pCF10. The peptide pheromones regulating pCF10 transfer act by modulating the ability of the PrgX transcription factor to repress the transcription of an operon encoding conjugation functions. Many Gram-positive bacteria regulate important processes, including the production of virulence factors, biofilm formation, sporulation, and genetic exchange using peptide-mediated signaling systems. The key master regulators of these systems comprise the RRNPP (RggRap/NprR/PlcR/PrgX) family of intracellular peptide receptors; these regulators show conserved structures. While many RRNPP systems include a core module of two linked genes encoding the regulatory protein and its cognate signaling peptide, the enterococcal sex pheromone plasmids have evolved to a complex system that also recognizes a second host-encoded signaling peptide. Additional regulatory genes not found in most RRNPP systems also modulate signal production and signal import in the enterococcal pheromone plasmids. This review summarizes several structural studies that cumulatively demonstrate that the ability of three pCF10 regulatory proteins to recognize the same 7-amino-acid pheromone peptide arose by convergent evolution of unrelated proteins from different families. We also focus on the selective pressures and structure/function constraints that have driven the evolution of pCF10 from a simple, single-peptide system resembling current RRNPPs in other bacteria to the current complex inducible plasmid transfer system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据