4.7 Article

Increased phosphatase regenerating liver-1 trigger vascular remodeling in injured ovary via platelet-derived growth factor signaling pathway

期刊

STEM CELL RESEARCH & THERAPY
卷 13, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13287-022-02772-9

关键词

Placenta-derived mesenchymal stem cells; Phosphatase regenerating liver-1; Ovary; Folliculogenesis; Vascular remodeling; Platelet-derived growth factor

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2017M3A9B4061665]

向作者/读者索取更多资源

This study investigated the therapeutic mechanism of PD-MSCs overexpressing PRL-1 in ovarian dysfunction and vascular remodeling. The results showed that PRL-1 enhanced ovarian function through the PDGF signaling pathway, providing new insights for more efficient therapies in degenerative medicine.
Background Vascular abnormalities in the ovary cause infertility accompanied by ovarian insufficiency due to a microenvironment of barren ovarian tissues. Placenta-derived mesenchymal stem cells (PD-MSCs, Naive) treatment in ovarian dysfunction shows angiogenic effect, however, the therapeutic mechanism between ovarian function and vascular remodeling still unclear. Therefore, we examined whether by phosphatase regenerating liver-1 (PRL-1), which is correlated with angiogenesis in reproductive systems, overexpressed PD-MSCs could maximize the angiogenic effects in an ovarian tissues injured of rat model with partial ovariectomy and their therapeutic mechanism by enhanced vascular function via PDGF signaling. Methods PD-MSCsPRL-1 (PRL-1) were generated by nonviral AMAXA gene delivery system and analyzed the vascular remodeling and follicular development in ovary. One week after Sprague-Dawley (SD) rats ovariectomy, Naive and PRL-1 was transplanted. The animals were sacrificed at 1, 3 and 5 weeks after transplantation and vascular remodeling and follicular development were analyzed. Also, human umbilical vein endothelial cells (HUVECs) and ovarian explantation culture were performed to prove the specific effects and mechanism of PRL-1. Results Vascular structures in ovarian tissues (e.g., number of vessels, thickness and lumen area) showed changes in the Naive and PRL-1-overexpressed PD-MSC (PRL-1) transplantation (Tx) groups compared to the nontransplantation (NTx) group. Especially, PRL-1 induce to increase the expression of platelet-derived growth factor (PDGF), which plays a role in vascular remodeling as well as follicular development, compared to the NTx. Also, the expression of genes related to pericyte and vascular permeability in arteries was significantly enhanced in the PRL-1 compared to the NTx (p < 0.05). PRL-1 enhanced the vascular formation and permeability of human umbilical vein endothelial cells (HUVECs) via activated the PDGF signaling pathway. Conclusions Our results show that PRL-1 restored ovarian function by enhanced vascular function via PDGF signaling pathway. These findings offer new insight into the effects of functionally enhanced stem cell therapy for reproductive systems and should provide new avenues to develop more efficient therapies in degenerative medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据