4.7 Article

Comprehensive metabolomics unveil the discriminatory metabolites of some Mediterranean Sea marine algae in relation to their cytotoxic activities

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-12265-7

关键词

-

资金

  1. Science, Technology & Innovation Funding Authority (STDF)
  2. Egyptian Knowledge Bank (EKB)

向作者/读者索取更多资源

The present study used UPLC-MS metabolite fingerprinting to characterize the metabolites of four marine algae species. It was found that some of these metabolites exhibited cytotoxic activity, providing insight into the chemistry and activity relationship of these algae species.
Marine algae have served as a treasure trove of structurally variable and biologically active metabolites. The present study emphasizes on UPLC-MS metabolites fingerprinting for the first systematic broad scale metabolites characterization of three different phyla of marine seaweeds; Ulva fasciata, Pterocladia capillacea and Sargassum hornschuchii along with Spirulina platensis harvested from the Mediterranean Sea. A total of 85 metabolites belonging to various classes including mostly fatty acids and their derivatives, terpenoids, amino acids and dipeptides with considerable amounts of polyphenolic compounds. OPLS-DA model offered a better overview of phylum-based discrimination rapidly uncovering the compositional heterogeneity in metabolite profiles of algae extracts. An OPLS model was constructed using the cytotoxic activities against PC3 and MDA-MB-231 tumor cells to succinctly screen cytotoxic discriminatory metabolites among the tested algae species. The coefficient plot revealed that unsaturated fatty acids as stearidonic acid and linolenic acid, terpenoids namely as rosmanol, campestanol, dipeptides primarily glutamylglycine, glycyltyrosine along with polyphenolic compounds being abundantly present in S. platensis and U. fasciata samples with relatively marked cytotoxic potential might be the significant contributors synergistically meditating their anti-proliferative activity against PC3 and MDA-MB-231 tumor cells. Such results serve as baseline for understanding the chemistry of these species and performing strict correlation between metabolite and activity where a lack of information in this regard is observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据