4.7 Article

A simple yet efficient approach for electrokinetic mixing of viscoelastic fluids in a straight microchannel

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-06202-x

关键词

-

资金

  1. IIT Ropar through the ISIRD research grant [1/2018/IITRPR/921]

向作者/读者索取更多资源

Complex fluids with non-Newtonian viscoelastic behavior are commonly encountered in micro and nanoscale systems. This study proposes a simple yet efficient strategy to mix such fluids by generating local electro-elastic instabilities and turbulence.
Many complex fluids such as emulsions, suspensions, biofluids, etc., are routinely encountered in many micro and nanoscale systems. These fluids exhibit non-Newtonian viscoelastic behaviour instead of showing simple Newtonian one. It is often needed to mix such viscoelastic fluids in small-scale micro-systems for further processing and analysis which is often achieved by the application of an external electric field and/or using the electroosmotic flow phenomena. This study proposes a very simple yet efficient strategy to mix such viscoelastic fluids based on extensive numerical simulations. Our proposed setup consists of a straight microchannel with small patches of constant wall zeta potential, which are present on both the top and bottom walls of the microchannel. This heterogeneous zeta potential on the microchannel wall generates local electro-elastic instability and electro-elastic turbulence once the Weissenberg number exceeds a critical value. These instabilities and turbulence, driven by the interaction between the elastic stresses and the streamline curvature present in the system, ultimately lead to a chaotic and unstable flow field, thereby facilitating the mixing of such viscoelastic fluids. In particular, based on our proposed approach, we show how one can use the rheological properties of fluids and associated fluid-mechanical phenomena for their efficient mixing even in a straight microchannel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据