4.7 Article

Vertical semiconductor deep ultraviolet light emitting diodes on a nanowire-assisted aluminum nitride buffer layer

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-11246-0

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Fonds de recherche du Quebec-Nature et technologies

向作者/读者索取更多资源

This research demonstrates a new method for producing vertical AlGaN deep UV LEDs on a silicon substrate using a thin AlN buffer layer. The configuration offers advantages such as low cost and high performance.
Vertical light-emitting diodes (LEDs) have many advantages such as uniform current injection, excellent scalability of the chip size, and simple packaging process. Hitherto, however, technologically important semiconductor aluminum gallium nitride (AlGaN) deep ultraviolet (UV) LEDs are mainly through lateral injection. Herein, we demonstrate a new and practical path for vertical AlGaN deep UV LEDs, which exploits a thin AlN buffer layer formed on a nanowire-based template on silicon (Si). Such a buffer layer enables in situ formation of vertical AlGaN deep UV LEDs on Si. Near Lambertian emission pattern is measured from the top surface. The decent reflectivity of Si in the deep UV range makes such a configuration a viable low-cost solution for vertical AlGaN deep UV LEDs. More importantly, the use of such a thin AlN buffer layer can allow an easy transfer of device structures to other carrier wafers for vertical AlGaN deep UV LEDs with ultimately high electrical and optical performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据