4.7 Article

Combining elemental and immunochemical analyses to characterize diagenetic alteration patterns in ancient skeletal remains

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-08979-3

关键词

-

资金

  1. European Research Council [724046]
  2. European Research Council (ERC) [724046] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

A study found that mutual protection between biomineral and organic fractions in bones and teeth helps promote the preservation of the organic fraction, and investigated the correlation between elemental variations and collagen distribution. By combining two methods, it was discovered that collagen had an uneven distribution in highly degraded samples, and there was a correlation between the presence of uranium and rare earth elements with collagen content.
Bones and teeth are biological archives, but their structure and composition are subjected to alteration overtime due to biological and chemical degradation postmortem, influenced by burial environment and conditions. Nevertheless, organic fraction preservation is mandatory for several archeometric analyses and applications. The mutual protection between biomineral and organic fractions in bones and teeth may lead to a limited diagenetic alteration, promoting a better conservation of the organic fraction. However, the correlation between elemental variations and the presence of organic materials (e.g., collagen) in the same specimen is still unclear. To fill this gap, chemiluminescent (CL) immunochemical imaging analysis has been applied for the first time for collagen localization. Then, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and CL imaging were combined to investigate the correlation between elemental (i.e., REE, U, Sr, Ba) and collagen distribution. Teeth and bones from various archeological contexts, chronological periods, and characterized by different collagen content were analyzed. Immunochemical analysis revealed a heterogeneous distribution of collagen, especially in highly degraded samples. Subsequently, LA-ICP-MS showed a correlation between the presence of uranium and rare earth elements and areas with low amount of collagen. The innovative integration between the two methods permitted to clarify the mutual relation between elemental variation and collagen preservation overtime, thus contributing to unravel the effects of diagenetic alteration in bones and teeth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据