4.6 Article

Time-delayed reservoir computing based on a dual-waveband quantum-dot spin polarized vertical cavity surface-emitting laser

期刊

OPTICAL MATERIALS EXPRESS
卷 12, 期 10, 页码 4047-4060

出版社

Optica Publishing Group
DOI: 10.1364/OME.451585

关键词

-

资金

  1. Horizon 2020 Framework Programme [871330]
  2. Hellenic Foundation for Research and Innovation (2247 NEBULA project)

向作者/读者索取更多资源

In this work, a numerical study on a time-delayed reservoir computing scheme is presented, utilizing a quantum-dot spin polarized vertical cavity surface-emitting laser (QD s-VCSEL) as the single nonlinear node. The scheme exploits the complex temporal dynamics of multiple energy states in quantum dot materials and utilizes dual emission to enhance computational efficiency.
In this work, we present numerical results concerning a time-delayed reservoir computing scheme, where its single nonlinear node, is a quantum-dot spin polarized vertical cavity surface-emitting laser (QD s-VCSEL). The proposed photonic neuromorphic scheme exploits the complex temporal dynamics of multiple energy states present in quantum dot materials and uses emission from two discrete wavebands and two polarization states, so as to enhance computational efficiency. The benchmark task used for this architecture, is the equalization of a distorted 25Gbaud PAM-4 signal after 50Km of transmission at 1550 nm. Results confirm that although typical ground-state emitting quantum-dot nodes offer limited performance, due to bandwidth limitations; by exploiting dual emission, we achieved a one-hundred-fold improvement in bit-error rate. This performance boost can pave the way for the infiltration of quantum-dot based devices in high-speed demanding neuromorphic driven applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据