4.3 Article

Improving the Altimeter-Derived Surface Currents Using High-Resolution Sea Surface Temperature Data: A Feasability Study Based on Model Outputs

期刊

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
卷 33, 期 12, 页码 2769-2784

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JTECH-D-16-0017.1

关键词

-

资金

  1. European Union under the FP7-PEOPLE-Co-funding of Regional, National and International Programmes [600407]
  2. RITMARE Flag Project

向作者/读者索取更多资源

Accurate knowledge of ocean surface currents at high spatial and temporal resolutions is crucial for a gamut of applications. The altimeter observing system, by providing repeated global measurements of the sea surface height, has been by far the most exploited system to estimate ocean surface currents over the past 20 years. However, it neither permits the observation of currents moving away from the geostrophic balance nor is it capable of resolving the shortest spatial and temporal scales of the currents. Therefore, to overcome these limitations, in this study the ways in which the high-spatial-resolution and high-temporal-resolution information from sea surface temperature (SST) images can improve the altimeter current estimates are investigated. The method involves inverting the SST evolution equation for the velocity by prescribing the source and sink terms and employing the altimeter currents as the large-scale background flow. The method feasibility is tested using modeled data from the Mercator Ocean system. This study shows that the methodology may improve the altimeter velocities at spatial scales not resolved by the altimeter system (i.e., below 150 km) but also at larger scales, where the geostrophic equilibrium might not be the unique or dominant process of the ocean circulation. In particular, the major improvements (more than 30% on the meridional component) are obtained in the equatorial band, where the geostrophic assumption is not valid. Finally, the main issues anticipated when this method is applied using real datasets are investigated and discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据