4.7 Article

Untargeted Metabolome Analysis Reveals Reductions in Maternal Hepatic Glucose and Amino Acid Content That Correlate with Fetal Organ Weights in a Mouse Model of Fetal Alcohol Spectrum Disorders

期刊

NUTRIENTS
卷 14, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/nu14051096

关键词

pregnancy; prenatal alcohol exposure; hepatic metabolism; untargeted metabolomics; glucose; amino acids; maternal-fetal metabolism; fetal weight; gluconeogenesis

资金

  1. National Institute of Health/National Institute on Alcohol Abuse and Alcoholism [K99 AA028291, R01 AA11085, R01 AA22999]
  2. UNC Nutrition Research Institute

向作者/读者索取更多资源

Prenatal alcohol exposure can cause fetal growth restrictions. Alcohol affects maternal metabolism, limiting glucose availability and resulting in changes in metabolic products, which may impact fetal weight.
Prenatal alcohol exposure (PAE) causes fetal growth restrictions. A major driver of fetal growth deficits is maternal metabolic disruption; this is under-investigated following PAE. Untargeted metabolomics on the dam and fetus exposed to alcohol (ALC) revealed that the hepatic metabolome of ALC and control (CON) dams were distinct, whereas that of ALC and CON fetuses were similar. Alcohol reduced maternal hepatic glucose content and enriched essential amino acid (AA) catabolites, N-acetylated AA products, urea content, and free fatty acids. These alterations suggest an attempt to minimize the glucose gap by increasing gluconeogenesis using AA and glycerol. In contrast, ALC fetuses had unchanged glucose and AA levels, suggesting an adequate draw of maternal nutrients, despite intensified stress on ALC dams. Maternal metabolites including glycolytic intermediates, AA catabolites, urea, and one-carbon-related metabolites correlated with fetal liver and brain weights, whereas lipid metabolites correlated with fetal body weight, indicating they may be drivers of fetal weight outcomes. Together, these data suggest that ALC alters maternal hepatic metabolic activity to limit glucose availability, thereby switching to alternate energy sources to meet the high-energy demands of pregnancy. Their correlation with fetal phenotypic outcomes indicates the influence of maternal metabolism on fetal growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据