4.6 Article

Influence of Woven-Fabric Type on the Efficiency of Fabric-Reinforced Polymer Composites

期刊

MATERIALS
卷 15, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/ma15093165

关键词

satin fabrics; fiber-reinforced composite (FRP); composite laminate; Modified Genetic Algorithm (MGA); optimization

资金

  1. PNII [FP7-ENV-2013-603722]

向作者/读者索取更多资源

The greatest advantage of fiber-reinforced composite materials is the freedom to tailor their strength and stiffness properties, while the most significant disadvantage consists in their high costs. Therefore, the optimization of the composite material's geometrical parameters becomes important. This paper presents a follow-up study on using and improving an in-house software called SOMGA (Satin Optimization with a Modified Genetic Algorithm) to optimize the design of satin-reinforced multi-layer composites. The ultimate goal is to find the best possible solution for designing a composite material that can withstand a specific set of in-plane loads, by considering the influence of various woven fabric types.
The greatest advantage of fiber-reinforced composite materials is the freedom to tailor their strength and stiffness properties, while the most significant disadvantage consists in their high costs. Therefore, the design process and especially the optimization phase becomes an important step. The geometry of the fabric of each lamina as well as their stacking sequence need to be carefully defined, starting from some basic geometric variables. The input parameters are the widths and the heights of the tows, the laminate-stacking sequence and the gaps between two successive tows or the height of the neat matrix. This paper is a follow-up to a previous work on using and improving an in-house software called SOMGA (Satin Optimization with a Modified Genetic Algorithm), aimed to optimize the geometrical parameters of satin-reinforced multi-layer composites. The final goal is to find out the way in which various types of woven fabrics can affect the best possible solution to the problem of designing a composite material, able to withstand a given set of in-plane loads. The efficiency of the composite structure is evaluated by its ultimate strains using a fitness function that analyses and compares the mechanical behavior of different fabric-reinforced composites. Therefore, the ultimate strains corresponding to each configuration are considered intermediate data, being analyzed comparatively until obtaining the optimal values. When the software is running, for each analysis step, a set of intermediate values is provided. However, the users do not have to store these values, because the final result of the optimization directly provides the composite configuration with maximum efficiency, whose structural response meets the initially imposed loading conditions. To illustrate how the SOMGA software works, six different satin-woven-fabric-reinforced composites, starting from plain weave (satin 2/1/1), then satin 3/1/1, satin 4/1/1, satin 5/1/1, satin 5/2/1 and finally satin 5/3/1, were evaluated in the SOMGA interface. The results were rated against each other in terms of the composite efficiency and the case characterized by minimal reinforcement undulation (thinnest laminate) were highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据