4.7 Article

Astragaloside IV Alleviates Renal Tubular Epithelial-Mesenchymal Transition via CX3CL1-RAF/MEK/ERK Signaling Pathway in Diabetic Kidney Disease

期刊

DRUG DESIGN DEVELOPMENT AND THERAPY
卷 16, 期 -, 页码 1605-1620

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/DDDT.S360346

关键词

Astragaloside IV; epithelial-mesenchymal transition; CX3CL1; diabetic kidney disease; renal fibrosis

资金

  1. National Natural Science Foundation of China [81873304]

向作者/读者索取更多资源

This study found that AS-IV can alleviate renal tubular EMT in DKD patients by regulating CX3CL1, thereby reducing renal pathological damage.
Background: Epithelial-mesenchymal transition (EMT) plays an important role in interstitial matrix deposition and renal fibrosis in diabetic kidney disease (DKD). It has been verified that Astragaloside IV (AS-IV) is beneficial for ameliorating DKD. However, the underlying mechanisms of AS-IV on regulating EMT in DKD are yet to be established. Accumulated evidence has suggested that C-X3-C motif ligand 1 (CX3CL1) plays a significant role in the progression of EMT. Purpose: We aimed to investigate whether AS-IV could alleviate EMT by regulating CX3CL1 in DKD and reveal its underlying mechanisms. Methods: For the in vivo study, mice were divided into the following five groups (n=10): db/m+vehicle, db/db+vehicle, db/db+AS-IV-L (10mg/kg/d), db/db+AS-IV-M (20mg/kg/d), db/db+AS-IV-H (40mg/kg/d). After 12 weeks of treatment, the renal injuries were assessed based on the related parameters of urine, blood and histopathological examination. Immunohistochemistry and Western blotting were used to detect relative proteins levels. Then in HK-2 cells, the molecular mechanism of AS-IV attenuating the EMT in mice with DKD through the CX3CL1-RAF/MEK/ERK pathway was studied. Results: In the present study, we found that AS-IV reduced urinary protein levels and improved renal pathological damage in DKD mice. Moreover, AS-IV ameliorated the renal tubular EMT induced by hyperglycemia or high glucose (HG), and decreased the expression of CX3CL1 and inhibited the activation of the RAF/MEK/ERK pathway in vivo and in vitro. In HK-2 cells, down regulation of CX3CL1 suppressed the stimulation of the RAF/MEK/ERK pathway and EMT induced by HG. However, CX3CL1 overexpression eliminated the benefits of AS-IV on the RAF/MEK/ERK pathway and EMT. Conclusion: In summary, we indicated that AS-IV alleviates renal tubular EMT through the CX3CL1-RAF/MEK/ERK signaling pathway, indicating that CX3CL1 could be a potential therapeutic target of AS-IV in DKD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据