4.6 Review

Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 15, 期 5, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2022.103743

关键词

Chitosan; Adsorption; Pharmaceutical residue; Ionic form; Mechanism

向作者/读者索取更多资源

This article provides a comprehensive overview of recent research on the removal of antibiotics by chitosan composite-based adsorbents. The structure, optimal removal conditions, and adsorption mechanisms of various antibiotics are summarized. The development of chitosan composite-based adsorbents and the factors influencing the adsorption process are discussed. Conclusions and future recommendations are also provided.
During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and kmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interac tions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据