4.8 Article

A machine learning algorithm with subclonal sensitivity reveals widespread pan-cancer human leukocyte antigen loss of heterozygosity

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29203-w

关键词

-

资金

  1. Personalis

向作者/读者索取更多资源

The authors developed a machine learning algorithm called DASH to detect HLA LOH from tumor-normal sequencing data. The algorithm showed higher sensitivity compared to previous tools and was validated using patient-specific digital PCR. Applying DASH to 610 patients, it was found that 18% had HLA LOH, indicating it as a key immune resistance strategy.
Human leukocyte antigen loss of heterozygosity (HLA LOH) is an important mechanism of immune escape in patients with cancer. Here the authors design and validate a machine learning algorithm with subclonal sensitivity for the identification of HLA LOH from paired tumor-normal sequencing data. Human leukocyte antigen loss of heterozygosity (HLA LOH) allows cancer cells to escape immune recognition by deleting HLA alleles, causing the suppressed presentation of tumor neoantigens. Despite its importance in immunotherapy response, few methods exist to detect HLA LOH, and their accuracy is not well understood. Here, we develop DASH (Deletion of Allele-Specific HLAs), a machine learning-based algorithm to detect HLA LOH from paired tumor-normal sequencing data. With cell line mixtures, we demonstrate increased sensitivity compared to previously published tools. Moreover, our patient-specific digital PCR validation approach provides a sensitive, robust orthogonal approach that could be used for clinical validation. Using DASH on 610 patients across 15 tumor types, we find that 18% of patients have HLA LOH. Moreover, we show inflated HLA LOH rates compared to genome-wide LOH and correlations between CD274 (encodes PD-L1) expression and microsatellite instability status, suggesting the HLA LOH is a key immune resistance strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据