4.8 Article

Phylotranscriptomic insights into a Mesoproterozoic-Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae)

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29282-9

关键词

-

资金

  1. National Natural Science Foundation of China [32122010, 31970229]
  2. Shenzhen Key Laboratory of Southern Subtropical Plant Diversity
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  4. Collaborative Innovation Center for Modern Crop Production

向作者/读者索取更多资源

The Ulvophyceae, a diverse group of green algae, originated earlier than expected and may have influenced biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition, according to a study reconstructing their phylogeny using extensive nuclear gene data.
The Ulvophyceae, a major group of green algae, is of particular evolutionary interest because of its remarkable morphological and ecological diversity. Its phylogenetic relationships and diversification timeline, however, are still not fully resolved. In this study, using an extensive nuclear gene dataset, we apply coalescent- and concatenation-based approaches to reconstruct the phylogeny of the Ulvophyceae and to explore the sources of conflict in previous phylogenomic studies. The Ulvophyceae is recovered as a paraphyletic group, with the Bryopsidales being a sister group to the Chlorophyceae, and the remaining taxa forming a clade (Ulvophyceae sensu stricto). Molecular clock analyses with different calibration strategies emphasize the large impact of fossil calibrations, and indicate a Meso-Neoproterozoic origin of the Ulvophyceae (sensu stricto), earlier than previous estimates. The results imply that ulvophyceans may have had a profound influence on oceanic redox structures and global biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition. Ulvophyceae is a remarkably morphologically and ecologically diverse clade of green algae. Here, the authors reconstruct the Ulvophyceae phylogeny, showing that these algae originated earlier than expected and may have influenced biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据