4.8 Article

Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-28406-5

关键词

-

资金

  1. Advanced Functional Nanorobots project - EFRR [CZ.02.1.01/0.0/0.0/15_003/0000444]

向作者/读者索取更多资源

Thermoresponsive magnetic nanorobots that can efficiently pick up and dispose of pollutants from water by adjusting the water temperature are developed. The dynamic nature of these nanorobots enables faster mass transport and a uniform mixing, resulting in improved pollutant degradation and removal. The combination of temperature sensitive aggregation/separation and magnetic propulsion opens up opportunities in the applicability of nanorobots in water treatment and targeted pollutant removal approaches.
Pesticide and heavy metal pollution in water can cause environmental and public health issues. Here, the authors report thermoresponsive magnetic nanorobots that can efficiently pick up and dispose of pollutants from water by adjusting the water temperature. Nano/micromotor technology is evolving as an effective method for water treatment applications in comparison to existing static mechanisms. The dynamic nature of the nano/micromotor particles enable faster mass transport and a uniform mixing ensuring an improved pollutant degradation and removal. Here we develop thermosensitive magnetic nanorobots (TM nanorobots) consisting of a pluronic tri-block copolymer (PTBC) that functions as hands for pollutant removal. These TM nanorobots are incorporated with iron oxide (Fe3O4) nanoparticles as an active material to enable magnetic propulsion. The pickup and disposal of toxic pollutants are monitored by intermicellar agglomeration and separation of PTBC at different temperatures. The as-prepared TM nanorobots show excellent arsenic and atrazine removal efficiency. Furthermore, the adsorbed toxic contaminants on the TM nanorobots can be disposed by a simple cooling process and exhibit good recovery retention after multiple reuse cycles. This combination of temperature sensitive aggregation/separation coupled with magnetic propulsion opens a plethora of opportunities in the applicability of nanorobots in water treatment and targeted pollutant removal approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据