4.8 Article

Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-28805-8

关键词

-

资金

  1. Ministry of Education in Singapore [RG105/19]
  2. National Natural Science Foundation of China [11874044, 52071225]
  3. Ministry of Science and Technology, Taiwan [MOST 108-2112-M-213-002-MY3, 110-2634-F-009-026]
  4. Center for Emergent Functional Matter Science of National Yang Ming Chiao Tung University
  5. NSCC in Tianjin

向作者/读者索取更多资源

Developing high-performance electrocatalysts for hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production, yet still challenging. In this study, boron-modulated osmium (B-Os) aerogels with rich defects and ultra-fine diameter were used as a pH-universal HER electrocatalyst, exhibiting small overpotentials and excellent stability.
Developing high-performance electrocatalysts for hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production, yet still challenging. Here, we report boron-modulated osmium (B-Os) aerogels with rich defects and ultra-fine diameter as a pH-universal HER electrocatalyst. The catalyst shows the small overpotentials of 12, 19, and 33 mV at a current density of 10 mA cm(-2) in acidic, alkaline, and neutral electrolytes, respectively, as well as excellent stability, surpassing commercial Pt/C. Operando X-ray absorption spectroscopy shows that interventional interstitial B atoms can optimize the electron structure of B-Os aerogels and stabilize Os as active sites in an electron-deficient state under realistic working conditions, and simultaneously reveals the HER catalytic mechanisms of B-Os aerogels in pH-universal electrolytes. The density functional theory calculations also indicate introducing B atoms can tailor the electronic structure of Os, resulting in the reduced water dissociation energy and the improved adsorption/desorption behavior of hydrogen, which synergistically accelerate HER. While noble metals can be active electrocatalysts for producing renewable H-2, there are relatively few works examining osmium materials. Here, the authors prepare boron-doped osmium aerogels for H-2 evolution electrocatalysis plus examine the mechanism using computational and in situ characterization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据